Advertisement

Novel Light Coupling Systems Devised Using a Harmony Search Algorithm Approach

  • Imanol Andonegui
  • Itziar Landa-Torres
  • Diana Manjarres
  • Angel J. Garcia-Adeva
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 514)

Abstract

We report a critical assessment of the use of an Inverse Design (ID) approach steamed by an improved Harmony Search (IHS) algorithm for enhancing light coupling to densely integrated photonic integratic circuits (PICs) using novel grating structures. Grating couplers, performing as a very attractive vertical coupling scheme for standard silicon nano waveguides are nowadays a custom component in almost every PIC. Nevertheless, their efficiency can be highly enhanced by using our ID methodology that can deal simultaneously with many physical and geometrical parameters. Moreover, this method paves the way for designing more sophisticated non-uniform gratings, which not only match the coupling efficiency of conventional periodic corrugated waveguides, but also allow to devise more complex components such as wavelength or polarization splitters, just to cite some.

Keywords

Grating structure Photonic integrated circuit Improved harmony search 

References

  1. 1.
    Galan, J.V.: Addressing fiber-to-chip coupling issues in silicon photonics. Ph.D. thesis, Universidad Politecnica de Valencia (2010)Google Scholar
  2. 2.
    Laere, F.V., Bogaerts, W., Taillaert, D., Dumon, P., Thourhout, D.V., Baets, R.: Grating couplers for coupling between optical fibers and nanophotonic waveguides. J. Lightwave Tech. 25, 151–156 (2007)CrossRefGoogle Scholar
  3. 3.
    Shoji, T., Tsuchizawa, T., Wanatabe, T., Tamada, K., Morita, H.: Low loss mode size converter from \(0.3 \, {\upmu }\text{ m }\) square Si wire waveguides to singlemode fibers. Electron. Lett. 38, 1669–1670 (2002)CrossRefGoogle Scholar
  4. 4.
    Taillaert, D., Laere, F.V., Ayre, M., Bogaerts, W., Van Thourhout, D., Bienstman, P., Baets, R.: Grating couplers for coupling between optical fibers and nanophotonic waveguides. Jpn. J. Appl. Phys. 45, 6071–6077 (2006)CrossRefGoogle Scholar
  5. 5.
    Wang, Y., Wang, X., Flueckiger, J., Yun, H., Shi, W., Bojko, R., Jaeger, N.A.F., Chrostowski, L.: Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits. Opt. Express 22, 20652–20662 (2014)CrossRefGoogle Scholar
  6. 6.
    Topley, R., O’Faolain, L., Thomson, D.J., Gardes, F.Y., Mashanovich, G.Z., Reed, G.T.: Planar surface implanted diffractive grating couplers in SOI. Opt. Express 22, 1077–1084 (2014)CrossRefGoogle Scholar
  7. 7.
    Taillaert, D.: Grating couplers as interface between optical fibres and nanophotonic waveguides. Ph.D. thesis, Universiteit Gent (2005)Google Scholar
  8. 8.
    Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188, 1567–1579 (2007)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76, 60–68 (2001)CrossRefGoogle Scholar
  10. 10.
    Forsati, R., Haghighat, A.T., Mahdavi, M.: Harmony search based algorithms for bandwidth-delay-constrained least-cost multicast routing. Comput. Commun. 31, 2505–2519 (2008)CrossRefGoogle Scholar
  11. 11.
    Geem, Z.W.: Harmony search in water pump switching problem. Adv. Nat. Comput. 3612, 751–760 (2005)Google Scholar
  12. 12.
    Del Ser, J., Bilbao, M.N., Gil-López, S., Matinmikko, M., Salcedo-Sanz, S.: Iterative power and subcarrier allocation in rate-constrained orthogonal multicarrier downlink systems based on hybrid harmony search heuristics. Eng. Appl. Arti. Intell. 24(5), 748–756 (2011)CrossRefGoogle Scholar
  13. 13.
    Landa-Torres, I., Gil-Lopez, S., Salcedo-Sanz, S., Del Ser, J., Portilla-Figueras, J.A.: A novel grouping harmony search algorithm for the multiple-type access node location problem. Expert Syst. Appl. 39(5), 5262–5270 (2012)CrossRefGoogle Scholar
  14. 14.
    Szu, H., Hartley, R.: Fast simulated annealing. Phys. Lett. A 122, 157–162 (1987)CrossRefGoogle Scholar
  15. 15.
    Andonegui, I., Calvo, I., Garcia-Adeva, A.J.: Inverse design and topology optimization of novel photonic crystal broadband passive devices for photonic integrated circuits. Appl. Phys. A 115(2), 433–438 (2014)CrossRefGoogle Scholar
  16. 16.
    Sigmund, O.: Manufacturing tolerant topology optimization. Acta. Mech. Sin. 25(2), 227–239 (2009)CrossRefzbMATHGoogle Scholar
  17. 17.
    Momeni, B., Adibi, A.: Optimization of photonic crystal demultiplexers based on the superprism effect. Appl. Phys. B 77(6–7), 555–560 (2003)CrossRefGoogle Scholar
  18. 18.
    Piggott, A.Y., Lu, J., Babinec, T.M., Lagoudakis, K., Petykiewicz, J., Vuckovic, J.: Inverse design and implementation of a wavelength demultiplexing grating coupler. In: CLEO: Science and Innovations, pp. SM3I-2 (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Imanol Andonegui
    • 1
  • Itziar Landa-Torres
    • 2
  • Diana Manjarres
    • 2
  • Angel J. Garcia-Adeva
    • 1
  1. 1.Department of Applied Physics I.University of the Basque Country UPV/EHUVitoriaSpain
  2. 2.TECNALIADerioSpain

Personalised recommendations