Advertisement

Metaheuristic Based Optimization for Tuned Mass Dampers Using Frequency Domain Responses

  • Gebrail Bekdaş
  • Sinan Melih Nigdeli
  • Xin-She Yang
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 514)

Abstract

The usage of tuned mass dampers is a practical technique for civil structures under undesired vibrations. Since earthquake or other excitations have random vibration with various frequencies, frequency domain responses of structures can be used in tuning of mass dampers. By the minimization of transfer function of the structure, the amplitude corresponding to the response frequency of the structure is minimized. Thus, the passive control of the structure is provided. The optimization problem is non-linear since the existence of inherent damping of the structure, possible solution range of tuned mass damper (TMD) and multiple modes of multiple degree of freedom structures. For that reason, three metaheuristic algorithms such as harmony search, flower pollination algorithm and teaching learning based optimization are compared in mean of performance and computation effort. All algorithms are feasible with significant possible advantages.

Keywords

Tuned mass damper Optimization Frequency domain responses Earthquake Harmony search Flower pollination algorithm Teaching learning based optimization 

References

  1. 1.
    Frahm, H.: Device for damping of bodies. U.S. Patent No: 989,958 (1911)Google Scholar
  2. 2.
    Ormondroyd, J., Den Hartog, J.P.: The theory of dynamic vibration absorber. T. ASME 50, 9–22 (1928)Google Scholar
  3. 3.
    Soto, M.G., Adeli, H.: Tuned mass dampers. Arch. Comput. Methods Eng. 20(4), 419–431 (2013)CrossRefGoogle Scholar
  4. 4.
    Den Hartog, J.P.: Mechanical Vibrations, 3rd edn. Mc Graw-Hill, New York (1947)zbMATHGoogle Scholar
  5. 5.
    Warburton, G.B.: Optimum absorber parameters for various combinations of response and excitation parameters. Earthq. Eng. Struct. Dyn. 10, 381–401 (1982)CrossRefGoogle Scholar
  6. 6.
    Sadek, F., Mohraz, B., Taylor, A.W., Chung, R.M.: A method of estimating the parameters of tuned mass dampers for seismic applications. Earthq. Eng. Struct. D. 26, 617–635 (1997)CrossRefGoogle Scholar
  7. 7.
    Chang, C.C.: Mass dampers and their optimal designs for building vibration control. Eng. Struct. 21, 454–463 (1999)CrossRefGoogle Scholar
  8. 8.
    Leung, A.Y.T., Zhang, H.: Particle swarm optimization of tuned mass dampers. Eng. Struct. 31, 715–728 (2009)CrossRefGoogle Scholar
  9. 9.
    Leung, A.Y.T., Zhang, H., Cheng, C.C., Lee, Y.Y.: Particle swarm optimization of TMD by non-stationary base excitation during earthquake. Earthq. Eng. Struct. Dyn. 37, 1223–1246 (2008)CrossRefGoogle Scholar
  10. 10.
    Hadi, M.N.S., Arfiadi, Y.: Optimum design of absorber for MDOF structures. J. Struct. Eng.-ASCE 124, 1272–1280 (1998)CrossRefGoogle Scholar
  11. 11.
    Marano, G.C., Greco, R., Chiaia, B.: A comparison between different optimization criteria for tuned mass dampers design. J. Sound Vib. 329, 4880–4890 (2010)CrossRefGoogle Scholar
  12. 12.
    Singh, M.P., Singh, S., Moreschi, L.M.: Tuned mass dampers for response control of torsional buildings. Earthq. Eng. Struct. Dyn. 31, 749–769 (2002)CrossRefGoogle Scholar
  13. 13.
    Desu, N.B., Deb, S.K., Dutta, A.: Coupled tuned mass dampers for control of coupled vibrations in asymmetric buildings. Struct. Control Health monit. 13, 897–916 (2006)CrossRefGoogle Scholar
  14. 14.
    Pourzeynali, S., Lavasani, H.H., Modarayi, A.H.: Active control of high rise building structures using fuzzy logic and genetic algorithms. Eng. Struct. 29, 346–357 (2007)CrossRefGoogle Scholar
  15. 15.
    Steinbuch, R.: Bionic optimisation of the earthquake resistance of high buildings by tuned mass dampers. J. Bionic Eng. 8, 335–344 (2011)CrossRefGoogle Scholar
  16. 16.
    Bekdaş, G., Nigdeli, S.M.: Estimating optimum parameters of tuned mass dampers using harmony search. Eng. Struct. 33, 2716–2723 (2011)CrossRefGoogle Scholar
  17. 17.
    Bekdaş, G., Nigdeli, S.M.: Optimization of tuned mass damper with harmony search. In: Gandomi, A.H., Yang, X.-S., Alavi, A.H., Talatahari, S. (eds.) Metaheuristic Applications in Structures and Infrastructures. Elsevier, Amsterdam (2013)Google Scholar
  18. 18.
    Bekdaş, G., Nigdeli, S.M.: Mass ratio factor for optimum tuned mass damper strategies. Int. J. Mech. Sci. 71, 68–84 (2013)CrossRefGoogle Scholar
  19. 19.
    Nigdeli, S.M., Bekdaş, G.: Optimum tuned mass damper design for preventing brittle fracture of RC buildings. Smart Struct. Syst. 12(2), 137–155 (2013)CrossRefGoogle Scholar
  20. 20.
    Nigdeli, S.M., Bekdaş, G.: Optimization of TMDs for different objectives. In: An International Conference on Engineering and Applied Sciences Optimization, Kos Island, Greece, 4–6 June 2014Google Scholar
  21. 21.
    Farshidianfar, A., Soheili, S.: Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil-structure interaction. Soil Dyn. Earthq. Eng. 51, 14–22 (2013)CrossRefGoogle Scholar
  22. 22.
    Farshidianfar, A., Soheili, S.: ABC optimization of TMD parameters for tall buildings with soil structure interaction. Interact. Multiscale Mech. 6, 339–356 (2013)CrossRefGoogle Scholar
  23. 23.
    Farshidianfar, A., Soheili, S.: Optimization of TMD parameters for earthquake vibrations of tall buildings including soil structure interaction. Int. J. Optim. Civ. Eng. 3, 409–429 (2013)Google Scholar
  24. 24.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  25. 25.
    Yang, X.-S.: Flower pollination algorithm for global optimization. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 240–249. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32894-7_27 CrossRefGoogle Scholar
  26. 26.
    Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Gebrail Bekdaş
    • 1
  • Sinan Melih Nigdeli
    • 1
  • Xin-She Yang
    • 2
  1. 1.Department of Civil EngineeringIstanbul UniversityAvcıLar, IstanbulTurkey
  2. 2.Design Engineering and MathematicsMiddlesex University LondonLondonUK

Personalised recommendations