Advertisement

Optimum Tuning of Mass Dampers by Using a Hybrid Method Using Harmony Search and Flower Pollination Algorithm

  • Sinan Melih Nigdeli
  • Gebrail Bekdaş
  • Xin-She Yang
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 514)

Abstract

In this study, a new approach is proposed for optimization of tuned mass damper positioned on the top of seismic structures. The usage of metaheuristic algorithms is a well-known and effective technique for optimum tuning of parameters such as mass, period and damping ratio. The aim of the study is to generate a new methodology in order to improve the computation capacity and precision of the final results. For that reason, harmony search (HS) and flower pollination algorithm (FPA) are hybridized by proposing a probability based approach. In the methodology, global and local search processes of HS are used together with global and local pollination stages of FPA. In that case, four different types of generation are used. In the methodology, these four types of generation have the same chance at the start of the optimization process and probabilities are reduced when the corresponding type of the generation is chosen. If an improvement is provided for the objective of the optimization, the probability of the effective type is increased. The proposed method has an effective convergence by providing improvement of the optimization objective comparing to classical FPA.

Keywords

Tuned mass damper Optimization Earthquake Harmony search OptFlower pollination algorithm Structures 

References

  1. 1.
    Den Hartog, J.P.: Mechanical Vibrations, 3rd edn. McGraw-Hill, New York (1947)zbMATHGoogle Scholar
  2. 2.
    Warburton, G.B.: Optimum absorber parameters for various combinations of response and excitation parameters. Earthq. Eng. Struct. Dyn. 10(3), 381–401 (1982)CrossRefGoogle Scholar
  3. 3.
    Sadek, F., Mohraz, B., Taylor, A.W., Chung, R.M.: A method of estimating the parameters of tuned mass dampers for seismic applications. Earthq. Eng. Struct. Dyn. 26(6), 617–636 (1997)CrossRefGoogle Scholar
  4. 4.
    Rana, R., Soong, T.T.: Parametric study and simplified design of tuned mass dampers. Eng. Struct. 20(3), 193–204 (1998)CrossRefGoogle Scholar
  5. 5.
    Chang, C.C.: Mass dampers and their optimal designs for building vibration control. Eng. Struct. 21(5), 454–463 (1999)CrossRefGoogle Scholar
  6. 6.
    Lee, C.L., Chen, Y.T., Chung, L.L., Wang, Y.P.: Optimal design theories and applications of tuned mass dampers. Eng. Struct. 28(1), 43–53 (2006)CrossRefGoogle Scholar
  7. 7.
    Bakre, S.V., Jangid, R.S.: Optimum parameters of tuned mass damper for damped main system. Struct. Control Health Monit. 14(3), 448–470 (2007)CrossRefGoogle Scholar
  8. 8.
    Hadi, M.N., Arfiadi, Y.: Optimum design of absorber for MDOF structures. J. Struct. Eng. 124(11), 1272–1280 (1998)CrossRefGoogle Scholar
  9. 9.
    Marano, G.C., Greco, R., Chiaia, B.: A comparison between different optimization criteria for tuned mass dampers design. J. Sound Vib. 329(23), 4880–4890 (2010)CrossRefGoogle Scholar
  10. 10.
    Singh, M.P., Singh, S., Moreschi, L.M.: Tuned mass dampers for response control of torsional buildings. Earthq. Eng. Struct. Dyn. 31(4), 749–769 (2002)CrossRefGoogle Scholar
  11. 11.
    Desu, N.B., Deb, S.K., Dutta, A.: Coupled tuned mass dampers for control of coupled vibrations in asymmetric buildings. Struct. Control Health Monit. 13(5), 897–916 (2006)CrossRefGoogle Scholar
  12. 12.
    Pourzeynali, S., Lavasani, H.H., Modarayi, A.H.: Active control of high rise building structures using fuzzy logic and genetic algorithms. Eng. Struct. 29(3), 346–357 (2007)CrossRefGoogle Scholar
  13. 13.
    Leung, A.Y.T., Zhang, H.: Particle swarm optimization of tuned mass dampers. Eng. Struct. 31(3), 715–728 (2009)CrossRefGoogle Scholar
  14. 14.
    Leung, A.Y., Zhang, H., Cheng, C.C., Lee, Y.Y.: Particle swarm optimization of TMD by non-stationary base excitation during earthquake. Earthq. Eng. Struct. Dyn. 37(9), 1223–1246 (2008)CrossRefGoogle Scholar
  15. 15.
    Steinbuch, R.: Bionic optimisation of the earthquake resistance of high buildings by tuned mass dampers. J. Bionic Eng. 8(3), 335–344 (2011)CrossRefGoogle Scholar
  16. 16.
    Bekdaş, G., Nigdeli, S.M.: Estimating optimum parameters of tuned mass dampers using harmony search. Eng. Struct. 33(9), 2716–2723 (2011)CrossRefGoogle Scholar
  17. 17.
    Bekdaş, G., Nigdeli, S.M.: Mass ratio factor for optimum tuned mass damper strategies. Int. J. Mech. Sci. 71, 68–84 (2013)CrossRefGoogle Scholar
  18. 18.
    Nigdeli, S.M., Bekdaş, G.: Optimum tuned mass damper design for preventing brittle fracture of RC buildings. Smart Struct. Syst. 12(2), 137–155 (2013)CrossRefGoogle Scholar
  19. 19.
    Yang, X.-S., Bekdaş, G., Nigdeli, S.M.: Review and applications of metaheuristic algorithms in civil engineering. In: Yang, X.-S., Bekdaş, G., Nigdeli, S.M. (eds.) Metaheuristics and Optimization in Civil Engineering, vol. 7, pp. 1–24. Springer, Cham (2016). doi: 10.1007/978-3-319-26245-1_1 CrossRefGoogle Scholar
  20. 20.
    Farshidianfar, A., Soheili, S.: Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil-structure interaction. Soil Dyn. Earthq. Eng. 51, 14–22 (2013)CrossRefGoogle Scholar
  21. 21.
    Farshidianfar, A., Soheili, S.: ABC optimization of TMD parameters for tall buildings with soil structure interaction. Interact. Multiscale Mech. 6(4), 339–356 (2013)CrossRefGoogle Scholar
  22. 22.
    Farshidianfar, A., Soheili, S.: Optimization of TMD parameters for earthquake vibrations of tall buildings including soil structure interaction. Int. J. Optim. Civ. Eng. 3, 409–429 (2013)Google Scholar
  23. 23.
    Nigdeli, S.M., Bekdaş, G.: Teaching-learning-based optimization for estimating tuned mass damper parameters. In: International Conference on Optimization Techniques in Engineering (2015)Google Scholar
  24. 24.
    Yang, X.-S.: Flower pollination algorithm for global optimization. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 240–249. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32894-7_27 CrossRefGoogle Scholar
  25. 25.
    Geem, Z.W., Kim, J.-H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  26. 26.
    Liu, M.Y., Chiang, W.L., Hwang, J.H., Chu, C.R.: Wind-induced vibration of high-rise building with tuned mass damper including soil-structure interaction. J. Wind Eng. Ind. Aerodyn. 96(6), 1092–1102 (2008)CrossRefGoogle Scholar
  27. 27.
    FEMA P-695: Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency (2009)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Sinan Melih Nigdeli
    • 1
  • Gebrail Bekdaş
    • 1
  • Xin-She Yang
    • 2
  1. 1.Department of Civil EngineeringIstanbul UniversityIstanbulTurkey
  2. 2.Design Engineering and MathematicsMiddlesex University LondonLondonUK

Personalised recommendations