Advertisement

Modified Harmony Search for Optimization of Reinforced Concrete Frames

  • Gebrail Bekdaş
  • Sinan Melih Nigdeli
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 514)

Abstract

In this study, harmony search algorithm is modified with several random search stages for optimum design of reinforced concrete frame structures. The structure is subjected to both static and dynamic forces. A detailed optimum design was proposed without grouping the design variables of the frame structure. The dynamic forces calculated according to the time history analyses. The objective is to find the most economical design supporting the design requirements of ACI-318 (Building code requirements for reinforced concrete structure). The method was applied to a non-symmetric structure and the proposal is feasible.

Keywords

Modified harmony search Reinforced concrete structures Optimization Frames Metaheuristic methods Structural optimization 

References

  1. 1.
    Sarma, K.C., Adeli, H.: Cost optimization of concrete structures. J. Struct. Eng. 124(5), 570–578 (1998)CrossRefGoogle Scholar
  2. 2.
    Adeli, H., Sarma, K.: Cost Optimization of Structures - Fuzzy Logic, Genetic Algorithms, and Parallel Computing. Wiley (2006)Google Scholar
  3. 3.
    Coello, C.C., Hernandez, F.S., Farrera, F.A.: Optimal design of reinforced concrete beams using genetic algorithms. Expert Syst. Appl. 12, 101–108 (1997)CrossRefGoogle Scholar
  4. 4.
    Rafiq, M.Y., Southcombe, C.: Genetic algorithms in optimal design and detailing of reinforced concrete biaxial columns supported by a declarative approach for capacity checking. Comput. Struct. 69, 443–457 (1998)CrossRefzbMATHGoogle Scholar
  5. 5.
    Koumousis, V.K., Arsenis, S.J.: Genetic algorithms in optimal detailed design of reinforced concrete members. Comput-Aided Civ. Inf. 13, 43–52 (1998)CrossRefGoogle Scholar
  6. 6.
    Rajeev, S., Krishnamoorthy, C.S.: Genetic algorithm-based methodology for design optimization of reinforced concrete frames. Comput-Aided Civ. Inf. 13, 63–74 (1998)CrossRefGoogle Scholar
  7. 7.
    Rath, D.P., Ahlawat, A.S., Ramaswamy, A.: Shape optimization of RC flexural members. J. Struct. Eng.-ASCE 125, 1439–1446 (1999)CrossRefGoogle Scholar
  8. 8.
    Camp, C.V., Pezeshk, S., Hansson, H.: Flexural design of reinforced concrete frames using a genetic algorithm. J. Struct. Eng.-ASCE 129, 105–111 (2003)CrossRefGoogle Scholar
  9. 9.
    Ferreira, C.C., Barros, M.H.F.M., Barros, A.F.M.: Optimal design of reinforced concrete T-sections in bending. Eng. Struct. 25, 951–964 (2003)CrossRefGoogle Scholar
  10. 10.
    Leps, M., Sejnoha, M.: New approach to optimization of reinforced concrete beams. Comput. Struct. 81, 1957–1966 (2003)CrossRefGoogle Scholar
  11. 11.
    Lee, C., Ahn, J.: Flexural design of reinforced concrete frames by genetic algorithm. J. Struct. Eng.-ASCE 129(6), 762–774 (2003)CrossRefGoogle Scholar
  12. 12.
    Balling, R., Yao, X.: Optimization of reinforced concrete frames. J. Struct. Eng. ASCE 123, 193–202 (1997)CrossRefGoogle Scholar
  13. 13.
    Ahmadkhanlou, F., Adeli, H.: Optimum cost design of reinforced concrete slabs using neural dynamics model. Eng. Appl. Artif. Intell. 18(1), 65–72 (2005)CrossRefGoogle Scholar
  14. 14.
    Adeli, H., Park, H.S.: Optimization of space structures by neural dynamics. Neural Networks 8(5), 769–781 (1995)CrossRefGoogle Scholar
  15. 15.
    Adeli, H., Park, H.S.: Neurocomputing for Design Automation. CRC Press (1998)Google Scholar
  16. 16.
    Barros, M.H.F.M., Martins, R.A.F., Barros, A.F.M.: Cost optimization of singly and doubly reinforced concrete beams with EC2-2001. Struct. Multidisciplinary Optim. 30(3), 236–242 (2005)CrossRefGoogle Scholar
  17. 17.
    Sirca, G.F., Adeli, H.: Cost optimization of prestressed concrete bridges. J. Struct. Eng. 131(3), 380–388 (2005)CrossRefGoogle Scholar
  18. 18.
    Govindaraj, V., Ramasamy, J.V.: Optimum detailed design of reinforced concrete continuous beams using genetic algorithms. Comput. Struct. 84(1), 34–48 (2005)CrossRefGoogle Scholar
  19. 19.
    Sahab, M.G., Ashour, A.F., Toropov, V.V.: Cost optimisation of reinforced concrete flat slab buildings. Eng. Struct. 27(3), 313–322 (2005)CrossRefGoogle Scholar
  20. 20.
    Zou, X.K., Chan, C.M.: Optimal seismic performance-based design of reinforced concrete buildings using nonlinear pushover analysis. Eng. Struct. 27(8), 1289–1302 (2005)CrossRefGoogle Scholar
  21. 21.
    Govindaraj, V., Ramasamy, J.V.: Optimum detailed design of reinforced concrete frames using genetic algorithms. Eng. Optim. 39(4), 471–494 (2007)CrossRefGoogle Scholar
  22. 22.
    Guerra, A., Kiousis, P.D.: Design optimization of reinforced concrete structures. Comput. Concrete 3(5), 313–334 (2006)CrossRefGoogle Scholar
  23. 23.
    Paya, I., Yepes, V., Gonzalez-Vidosa, F., Hospitaler, A.: Multiobjective optimization of concrete frames by simulated annealing. Comput.-Aided Civil Infrastruct. Eng. 23(8), 596–610 (2008)CrossRefzbMATHGoogle Scholar
  24. 24.
    Perea, C., Alcala, J., Yepes, V., Gonzalez-Vidosa, F., Hospitaler, A.: Design of reinforced concrete bridge frames by heuristic optimization. Adv. Eng. Softw. 39(8), 676–688 (2008)CrossRefGoogle Scholar
  25. 25.
    Paya-Zaforteza, I., Yepes, V., Hospitaler, A., Gonzalez-Vidosa, F.: CO\(_2\) optimization of reinforced concrete frames by simulated annealing. Eng. Struct. 31(7), 1501–1508 (2009)CrossRefzbMATHGoogle Scholar
  26. 26.
    Camp, C.V., Huq, F.: CO\(_2\) and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm. Eng. Struct. 48, 363–372 (2013)CrossRefGoogle Scholar
  27. 27.
    Gil-Martín, L.M., Hernandez-Montes, E., Aschheim, M.: Optimal reinforcement of RC columns for biaxial bending. Mater. Struct. 43(9), 1245–1256 (2010)CrossRefGoogle Scholar
  28. 28.
    Barros, A.F.M., Barros, M.H.F.M., Ferreira, C.C.: Optimal design of rectangular RC sections for ultimate bending strength. Struct. Multidisciplinary Optim. 45(6), 845–860 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Fedghouche, F., Tiliouine, B.: Minimum cost design of reinforced concrete T-beams at ultimate loads using Eurocode2. Eng. Struct. 42, 43–50 (2012)CrossRefGoogle Scholar
  30. 30.
    Ceranic, B., Fryer, C., Baines, R.W.: An application of simulated annealing to the optimum design of reinforced concrete retaining structures. Comput. Struct. 79(17), 1569–1581 (2001)CrossRefGoogle Scholar
  31. 31.
    Yepes, V., Alcala, J., Perea, C., Gonzalez-Vidosa, F.: A parametric study of optimum earth-retaining walls by simulated annealing. Eng. Struct. 30(3), 821–830 (2008)CrossRefGoogle Scholar
  32. 32.
    Camp, C.V., Akin, A.: Design of retaining walls using big bang–big crunch optimization. J. Struct. Eng. 138(3), 438–448 (2011)CrossRefGoogle Scholar
  33. 33.
    Kaveh, A., Abadi, A.S.M.: Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls. Int. J. Civil Eng. 9(1), 1–8 (2011)Google Scholar
  34. 34.
    Talatahari, S., Sheikholeslami, R., Shadfaran, M., Pourbaba, M.: Optimum design of gravity retaining walls using charged system search algorithm. Mathematical Problems in Engineering (2012)Google Scholar
  35. 35.
    Akin, A., Saka, M.P.: Optimum detailed design of reinforced concrete continuous beams using the harmony search algorithm. In: Proceedings of the Tenth International Conference on Computational Structures Technology, vol. 131, pp. 109–119 (2010)Google Scholar
  36. 36.
    Akin, A., Saka, M.P.: Optimum detailing design of reinforced concrete plane frames to ACI 318–05 using the harmony search algorithm. In: Proceedings of the Eleventh International Conference on Computational Structures Technology 72 (2012)Google Scholar
  37. 37.
    Akin, A., Saka, M.P.: Harmony search algorithm based optimum detailed design of reinforced concrete plane frames subject to ACI 318–05 provisions. Comput. Struct. 147, 79–95 (2015)CrossRefGoogle Scholar
  38. 38.
    Bekdaş, G., Nigdeli, S.M.: Cost optimization of T-shaped reinforced concrete beams under flexural effect according to ACI 318. In: 3rd European Conference of Civil Engineering (2012)Google Scholar
  39. 39.
    Kaveh, A., Sabzi, O.: A comparative study of two meta-heuristic algorithms for optimum design of reinforced concrete frames. Int. J. Civil Eng. 9(3), 193–206 (2011)Google Scholar
  40. 40.
    Kaveh, A., Sabzi, O.: Optimal design of reinforced concrete frames using big bang-big crunch algorithm. Int. J. Civil Eng. 10(3), 189–200 (2012)Google Scholar
  41. 41.
    Rama Mohan Rao, A.R., Shyju, P.P.: A.R., Shyju, P. P.: A meta-heuristic algorithm for multi-objective optimal design of Hybrid Laminate Composite Structures. Comput.-Aided Civil Infrastruct. Eng. 25(3), 149–170 (2010)CrossRefGoogle Scholar
  42. 42.
    ACI 318M–05, Building code requirements for structural concrete and commentary, American Concrete Institute (2005)Google Scholar
  43. 43.
    Geem, Z.W., Kim, J.-H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  44. 44.
    PEER Pacific earthquake engineering resource center: NGA database. University of California, Berkeley (2005). http://peer.berkeley.edu/nga. Accessed Nov 2011

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Civil EngineeringIstanbul UniversityIstanbulTurkey

Personalised recommendations