Harmony Search Based Algorithms for the Minimum Interference Frequency Assignment Problem

  • Yasmine LahsinatEmail author
  • Dalila Boughaci
  • Belaid Benhamou
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 514)


The Minimum Interference Frequency Assignment Problem (MI-FAP) is a particularly hard combinatorial optimization problem. It consists in the assignment of a limited number of frequencies to each transceiver of the network without or at least with a low level of interference. In this work, we present an adaptation of the Harmony Search (HS) algorithm to tackle the MI-FAP problem. The results obtained by the adaptation of the classical Harmony Search algorithm are unsatisfactory. We performed a computation testing over some data sets of various sizes picked from public available benchmarks. The experimental results show that the conventional harmony search suffers from its premature convergence and therefore gets stuck in local optima. Even when it succeeds to escape from the local optimum, it does it after a long period of time. This make the process very slow. Due to these unconvincing results, we want to improve the Harmony Search algorithm’s performances. To handle that, we propose some small changes and tricks that we bring to the original Harmony Search algorithm and a hybridization with a local search and the Opposition Based Learning (OPBL) principle. Here, we propose two strategies to improve the performances of the classical harmony search algorithm. We will show that both of them succeeds to enhance the performances of the harmony search in solving the MI-FAP. One of the proposed strategies gives as good results as those of the state of the art for some instances. Nevertheless, the method still need adjustment to be more competitive.


Harmony search MI-FAP Optimization Local search OPBL 


  1. 1.
    Aardal, K.I., Van Hoesel, S.P., Koster, A.M., Mannino, C., Sassano, A.: Models and solution techniques for frequency assignment problems. Ann. Oper. Res. 153(1), 79–129 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alami, J., El Imrani, A.: Using cultural algorithm for the fixed-spectrum frequency assignment problem. J. Mob. Commun. 2(1), 1–9 (2008)Google Scholar
  3. 3.
    Audhya, G.K., Sinha, K., Mandal, K., Dattagupta, R., Ghosh, S.C., Sinha, B.P.: A new approach to fast near-optimal channel assignment in cellular mobile networks. IEEE Trans. Mob. Comput. 12(9), 1814–1827 (2013)CrossRefGoogle Scholar
  4. 4.
    Beckmann, D., Killat, U.: Frequency planning with respect to interference minimization in cellular radio networks. Rapport technique, COST, 259 (1999)Google Scholar
  5. 5.
    Dorne, R., Hao, J.K.: Tabu search for graph coloring, T-colorings and set T-colorings. Meta-heuristics 77–92 (1999)Google Scholar
  6. 6.
    Duque-Anton, M., Kunz, D., Ruber, B.: Channel assignment for cellular radio using simulated annealing. IEEE Trans. Veh. Technol. 42(1), 14–21 (1993)CrossRefGoogle Scholar
  7. 7.
    Eisenblatter, A.: Frequency Assignment in GSM Networks: models, heuristics, and lower bounds. PhD Thesis, Technische Universitat Berlin (2001)Google Scholar
  8. 8.
    Fischetti, M., Lepschy, C., Minerva, G., Romanin-Jacur, G., Toto, E.: Frequency assignment in mobile radio systems using branch-and-cut techniques. Eur. J. Oper. Res. 123(2), 241–255 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Geem, Z.W., Kim, J.-H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  10. 10.
    Hale, W.K.: Frequency assignment: theory and applications. Proc. IEEE 68(12), 1497–1514 (1980)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Del Ser, J., Matinmikko, M., Gil-Lopez, S., Mustonen, M.: Centralized and distributed spectrum channel assignment in cognitive wireless networks: a harmony search approach. Appl. Soft Comput. 12(2), 921–930 (2012)CrossRefGoogle Scholar
  13. 13.
    Del Ser, J., Bilbao, M.N., Gil-Lopez, S., Matinmikko, M., Salcedo-Sanz, S.: Iterative power and subcarrier allocation in rate-constrained orthogonal multicarrier downlink systems based on hybrid harmony search heuristics. Eng. Appl. Artif. Intell. 24(5), 748–756 (2011)CrossRefGoogle Scholar
  14. 14.
    Lahsinat, Y., Benhamou, B., Boughaci, D.: Trois hyper-heuristiques pour le problème d’affectation de fréquence dans un réseau cellulaire. In: 11th Journées Francophones de programmation par contraintes (JFPC), pp. 184–193 (2015)Google Scholar
  15. 15.
    Lai, X., Hao, J.K.: Path relinking for the fixed spectrum frequency assignment problem. Expert Syst. Appl. 42(10), 4755–4767 (2015)CrossRefGoogle Scholar
  16. 16.
    Leese, R. Hurley, S.: Methods and Algorithms for Radio Channel Assignment. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press (2002)Google Scholar
  17. 17.
    Luna, F., Blum, C., Alba, E., Nebro, A.J.: ACO vs EAs for solving a real-world frequency assignment problem in GSM networks. In: Annual Conference on Genetic and Evolutionary Computation, pp. 94–101 (2007)Google Scholar
  18. 18.
    Luna, F., Estebanez, C., Coromoto, L., Chaves-Gonzalez, J.M., Nebro, A.J., Aler, R., Segura, C., Vega-Rodriguez, M.A., Alba, E., Valls, J.M., Miranda, G., Gomez Pulido, J.A.: Optimization algorithms for large-scale real-world instances of the frequency assignment problem. Soft. Comput. 15(5), 975–990 (2011)CrossRefGoogle Scholar
  19. 19.
    Mabed, H., Caminada, A., Hao, J.K.: Genetic tabu search for robust fixed channel assignment under dynamic traffic data. Comput. Optim. Appl. 50(3), 483–506 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Metzger, B.H.: Spectrum management technique. In: National ORSA Meeting, pp. 1497–1514 (1970)Google Scholar
  21. 21.
    Montemanni, R., Moon, J.N.J., Smith, D.H.: An improved tabu search algorithm for the fixed spectrum frequency assignment problem. IEEE Trans. Veh. Technol. 52(4), 891–901 (2003)CrossRefGoogle Scholar
  22. 22.
    Montemanni, R., Smith, D.H.: Heuristic manipulation, tabu search and frequency assignment. Comput. Oper. Res. 37(3), 543–551 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tizhoosh, H.: Opposition-based learning: a new scheme for machine intelligence. In: International Conference on Computational Intelligence and Automation I, pp. 695–701 (2005)Google Scholar
  24. 24.
    Wu, J., Dai, Y., Zhao, Y.C.: The effective channel assignments in cognitive radio networks. Comput. Commun. 71(1), 411–420 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Yasmine Lahsinat
    • 1
    Email author
  • Dalila Boughaci
    • 1
  • Belaid Benhamou
    • 2
  1. 1.LRIA-FEI/USTHBAlgerAlgeria
  2. 2.Université Aix-Marseille, LSIS, Domaine universitaire de Saint JérômeMarseille Cedex 20France

Personalised recommendations