Cost-Efficient Selective Network Caching in Large-Area Vehicular Networks Using Multi-objective Heuristics

  • Miren Nekane Bilbao
  • Cristina Perfecto
  • Javier Del Ser
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 514)


In the last decade the interest around network caching techniques has augmented notably for alleviating the ever-growing demand of resources by end users in mobile networks. This gained momentum stems from the fact that even though the overall volume of traffic retrieved from Internet has increased at an exponential pace over the last years, several studies have unveiled that a large fraction of this traffic is usually accessed by multiple end users at nearby locations, i.e. content demands are often local and redundant across terminals close to each other, even in mobility. In this context this manuscript explores the application of multi-objective heuristics to optimally allocate cache profiles over urban scenarios with mobile receivers (e.g. vehicles). To this end we formulate two conflicting objectives: the utility of the cache allocation strategy, which roughly depends on the traffic offloaded from the network and the number of users demanding contents; and its cost, given by an cost per unit of stored data and the rate demanded by the cached profile. Simulations are performed and discussed over a realistic vehicular scenario modeled over the city of Cologne (Germany), from which it is concluded that the proposed heuristic solver excels at finding caching solutions differently balancing the aforementioned objectives.


Network caching Vehicular networks Heuristics 



This work has been supported by the Basque Government through the ELKARTEK program (ref. KK-2015/0000080) and the BID3ABI project.


  1. 1.
    Cisco: Visual networking index: forecast and methodology 2013–2018. White Paper (2014).
  2. 2.
    Luotonen, A.: Web Proxy Servers. Prentice Hall, Upper Saddle River (1997)Google Scholar
  3. 3.
    Wessels, D.: Web Caching. O’Reilly and Associates, Sebastopol (2001)Google Scholar
  4. 4.
    Wang, X., Chen, M., Taleb, T., Ksentini, A., Leung, V.C.M.: Cache in the air: exploiting content caching and delivery techniques for 5G systems. IEEE Commun. Mag. 52(2), 131–139 (2014)CrossRefGoogle Scholar
  5. 5.
    ElBamby, M.S., Bennis, M., Saad, W., Latva-Aho, M.: Content-aware user clustering and caching in wireless small cell networks. In: IEEE International Symposium on Wireless Communications Systems, pp. 945–949 (2014)Google Scholar
  6. 6.
    Syed, T., Bennis, M., Nardelli, P., Latva-Aho, M.: Caching in wireless small cell networks: a storage-bandwidth trade-off. IEEE Commun. Lett. (2016, to appear).
  7. 7.
    Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., Ohlman, B.: A survey of information-centric networking. IEEE Commun. Mag. 50(7), 26–36 (2012)CrossRefGoogle Scholar
  8. 8.
    Xylomenos, G., Ververidis, C., Siris, V., Fotiou, N., Tsilopoulos, C., Vasilakos, X., Katsaros, K., Polyzos, G.: A survey of information-centric networking research. IEEE Commun. Surv. Tutor. 16(2), 1024–1049 (2013)CrossRefGoogle Scholar
  9. 9.
    Amadeo, M., Campolo, C., Molinaro, A.: CRoWN: content-centric networking in vehicular ad hoc networks. IEEE Commun. Lett. 16(9), 1380–1383 (2012)CrossRefGoogle Scholar
  10. 10.
    Amadeo, M., Campolo, C., Molinaro, A.: Enhancing content-centric networking for vehicular environments. Comput. Netw. 57(16), 3222–3234 (2013)CrossRefGoogle Scholar
  11. 11.
    TalebiFard, P., Leung, V.C.M., Amadeo, M., Campolo, C., Molinaro, A.: Information-centric networking for VANETs. In: Campolo, C., Molinaro, A., Scopigno, R. (eds.) Vehicular Ad Hoc Networks: Standards, Solutions, and Research, pp. 503–524. Springer, Cham (2015). doi: 10.1007/978-3-319-15497-8_17 CrossRefGoogle Scholar
  12. 12.
    Liu, X., Li, Z., Yang, P., Dong, Y.: Information-centric mobile ad hoc networks and content routing: a survey. Ad Hoc Netw. (2016)Google Scholar
  13. 13.
    Xue, G., Li, Z., Zhu, H., Liu, Y.: Traffic-known urban vehicular route prediction based on partial mobility patterns. In: International Conference on Parallel and Distributed Systems, pp. 369–375 (2009)Google Scholar
  14. 14.
    Chen, L., Lv, M., Ye, Q., Chen, G., Woodward, J.: A personal route prediction system based on trajectory data mining. Inf. Sci. 181(7), 1264–1284 (2011)CrossRefGoogle Scholar
  15. 15.
    Geem, Z.W., Kim, J.-H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  16. 16.
    Ceylan, H., Ceylan, H., Haldenbilen, S., Baskan, O.: Transport energy modeling with meta-heuristic harmony search algorithm: an application to Turkey. Energy Policy 36(7), 2527–2535 (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Vasebi, A., Fesanghary, M., Bathaee, S.M.T.: Combined heat and power economic dispatch by harmony search algorithm. Int. J. Electr. Power Energy Syst. 29(10), 713–719 (2007)CrossRefGoogle Scholar
  18. 18.
    Salcedo-Sanz, S., Pastor-Sanchez, A., Del Ser, J., Prieto, L., Geem, Z.W.: A coral reefs optimization algorithm with harmony search operators for accurate wind speed prediction. Renew. Energy 75, 93–101 (2015)CrossRefGoogle Scholar
  19. 19.
    Del Ser, J., Bilbao, M.N., Gil-Lopez, S., Matinmikko, M., Salcedo-Sanz, S.: Iterative power and subcarrier allocation in rate-constrained orthogonal multicarrier downlink systems based on hybrid harmony search heuristics. Eng. Appl. Artif. Intell. 24(5), 748–756 (2011)CrossRefGoogle Scholar
  20. 20.
    Landa-Torres, I., Gil-Lopez, S., Del Ser, J., Salcedo-Sanz, S., Manjarres, D., Portilla-Figueras, J.A.: Efficient citywide planning of open WiFi access networks using novel grouping harmony search heuristics. Eng. Appl. Artif. Intell. 26(3), 1124–1130 (2013)CrossRefGoogle Scholar
  21. 21.
    Garcia-Santiago, C.A., Del Ser, J., Upton, C., Quilligan, F., Gil-Lopez, S., Salcedo-Sanz, S.: A random-key encoded harmony search approach for energy-efficient production scheduling with shared resources. Eng. Opt. 47(11), 1481–1496 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pan, Q.K., Suganthan, P.N., Liang, J.J., Tasgetiren, M.F.: A local-best harmony search algorithm with dynamic sub-harmony memories for lot-streaming flow shop scheduling problem. Expert Sys. Appl. 38(4), 3252–3259 (2011)CrossRefGoogle Scholar
  23. 23.
    Agustín-Blas, L.E., Salcedo-Sanz, S., Jiménez-Fernández, S., Carro-Calvo, L., Del Ser, J., Portilla-Figueras, J.A.: A new grouping genetic algorithm for clustering problems. Expert Syst. Appl. 39(10), 9695–9703 (2012)CrossRefGoogle Scholar
  24. 24.
    Karimi, Z., Abolhassani, H., Beigy, H.: A new method of mining data streams using harmony search. J. Intell. Inf. Syst. 39(2), 491–511 (2012)CrossRefGoogle Scholar
  25. 25.
    Manjarres, D., Landa-Torres, I., Gil-Lopez, S., Del Ser, J., Bilbao, M.N., Salcedo-Sanz, S., Geem, Z.W.: A survey on applications of the harmony search algorithm. Eng. Appl. Artif. Intell. 26(8), 1818–1831 (2013)CrossRefGoogle Scholar
  26. 26.
    Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley, Chichester (2006)Google Scholar
  27. 27.
    Uppoor, S., Trullols-Cruces, O., Fiore, M., Barcelo-Ordinas, J.M.: Generation and analysis of a large-scale urban vehicular mobility dataset. IEEE Trans. Mob. Comput. 13(5), 1061–1075 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Miren Nekane Bilbao
    • 1
  • Cristina Perfecto
    • 1
  • Javier Del Ser
    • 1
    • 2
    • 3
  1. 1.University of the Basque Country UPV/EHUBilbaoSpain
  2. 2.TECNALIADerioSpain
  3. 3.Basque Center for Applied Mathematics (BCAM)BilbaoSpain

Personalised recommendations