Advertisement

Sensitivity Analysis on Migration Parameters of Parallel Harmony Search

  • Ari Hong
  • Donghwi Jung
  • Jiho Choi
  • Joong Hoon Kim
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 514)

Abstract

Parallel Harmony Search (PHS) is a harmony search variant that employs parallel computing approach for improving the final solution quality of harmony search. A preliminary version of PHS was introduced in 2015 and applied to a highly nonlinear water infrastructure planning problem with extreme dimensionality. The application results showed that the PHS was promising and efficient in finding a feasible and near-optimal solution for such problem. However, sensitivity analysis on migration parameters of PHS should be performed to guarantee the best performance of PHS. Migration parameters of interest are migration frequency, migration topology, migration size, and so forth. In this study, PHSs with different migration frequencies are compared with respect to the final solution quality to identify the most efficient frequency in the water infrastructure planning problem.

Keywords

Parallel harmony search Migration frequency Sensitivity analysis 

Notes

Acknowledgements

This subject is supported by Korea Ministry of Environment as Global Top Project (2016002120004).

References

  1. 1.
    Elfeky, E.Z., Sarker, R., Essam, D.L.: Partial decomposition and parallel GA (PD-PGA) for constrained optimization. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 220–227 (2008)Google Scholar
  2. 2.
    Artina, S., Bragalli, C., Erbacci, G., Marchi, A., Rivi, M.: Contribution of parallel NSGA-II in optimal design of water distribution networks. J. Hydroinformatics 14(2), 310–323 (2012)CrossRefGoogle Scholar
  3. 3.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  4. 4.
    Abu-Lebdeh, G., Chen, H., Ghanim, M.: Improving performance of genetic algorithms for transportation systems: case of parallel genetic algorithms. J. Infrastruct. Syst. A4014002 (2014)Google Scholar
  5. 5.
    Jung, D., Choi, J., Choi, Y.H., Kim, J.H.: A new parallelization scheme for harmony search algorithm. In: Kim, J.H., Geem, Z.W. (eds.) Harmony Search Algorithm. AISC, vol. 382, pp. 147–152. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-47926-1_15 CrossRefGoogle Scholar
  6. 6.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  7. 7.
    Kim, J.H., Geem, Z.W., Kim, E.S.: Parameter estimation of the nonlinear muskingum model using harmony search. J. Am. Water Res. Assoc. 37(5), 1131–1138 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Ari Hong
    • 1
  • Donghwi Jung
    • 2
  • Jiho Choi
    • 1
  • Joong Hoon Kim
    • 1
  1. 1.Department of Civil, Environmental and Architectural EngineeringKorea UniversitySeoulSouth Korea
  2. 2.Research Center for Disaster Prevention Science and TechnologyKorea UniversitySeoulSouth Korea

Personalised recommendations