Skip to main content

Regulation of Cell Volume by Osmolytes

  • Chapter
  • First Online:

Abstract

Osmolytes are small organic molecules dissolved in cellular and extracellular fluids of all forms of living organisms to maintain the cellular volume. However, in addition to their role in volume regulation, osmolytes do play a variety of roles in biological systems including protein folding, protein disaggregation, protein-protein interaction, and protection against highly osmotic environments. Nature has preferably selected the organic osmolytes for these functions over the inorganic ions due to several reasons. The naturally occurring osmolytes belong to four chemical classes, namely, polyols, sugars, amino acids, and methylamines. In certain instances, osmolytes are used to determine the maximum depth up to which a fish can survive in the marine ecosystem. Additionally, methylamine osmolytes like trimethylamine N-oxide, glycerophosphocholine, and betaine are able to counteract the effect of denaturants under both in vivo and in vitro conditions. In fact, organisms use a large amount of different varieties of osmolytes as an adaptation to the environment where they reside. In this chapter, an up-to-date knowledge of the roles of organic osmolytes in regulating the cell volume is being discussed in detail. Future insights in this direction have also been highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed S (1992) Coping with excess salt in their growth environments: osmoregulation and other survival strategies deployed by the mangroves. Pak J Mar Sci 1:73–86

    Google Scholar 

  • Altendorf K et al. (2009) Osmotic stress. EcoSal Plus 3. doi:10.1128/ecosalplus.5.4.5

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Avonce N et al (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ayus JC et al (2008) Brain cell volume regulation in hyponatremia: role of sex, age, vasopressin, and hypoxia. Am J Physiol Renal Physiol 295:F619–F624

    Article  CAS  PubMed  Google Scholar 

  • Bell W et al (1992) Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur J Biochem 209:951–959

    Article  CAS  PubMed  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Sheveleva E (1998) Plant stress adaptations--making metabolism move. Curr Opin Plant Biol 1:267–274

    Article  CAS  PubMed  Google Scholar 

  • Bolen D, Baskakov IV (2001) The osmophobic effect: natural selection of a thermodynamic force in protein folding. J Mol Biol 310:955–963

    Article  CAS  PubMed  Google Scholar 

  • Boos W et al (1987) Trehalase of Escherichia coli. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions. J Biol Chem 262:13212–13218

    CAS  PubMed  Google Scholar 

  • Boos W et al (1990) Trehalose transport and metabolism in Escherichia coli. J Bacteriol 172:3450–3461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briens M, Larher F (1982) Osmoregulation in halophytic higher plants: a comparative study of soluble carbohydrates, polyols, betaines and free proline. Plant Cell Environ 5:287–292

    CAS  Google Scholar 

  • Burg MB (1994) Molecular basis for osmoregulation of organic osmolytes in renal medullary cells. J Exp Zool 268:171–175

    Article  CAS  PubMed  Google Scholar 

  • Burg MB (1995) Molecular basis of osmotic regulation. Am J Phys 268:F983–F996

    CAS  Google Scholar 

  • Burg MB, Ferraris JD (2008) Intracellular organic osmolytes: function and regulation. J Biol Chem 283:7309–7313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burg MB, Knepper MA (1986) Single tubule perfusion techniques. Kidney Int 30:166–170

    Article  CAS  PubMed  Google Scholar 

  • Burg MB et al (1997) Regulation of gene expression by hypertonicity 1. Annu Rev Physiol 59:437–455

    Article  CAS  PubMed  Google Scholar 

  • Burg MB et al (2007) Cellular response to hyperosmotic stresses. Physiol Rev 87:1441–1474

    Article  CAS  PubMed  Google Scholar 

  • Carr WE et al (1996) Stimulants of feeding behavior in fish: analyses of tissues of diverse marine organisms. Biol Bull 190:149–160

    Article  CAS  Google Scholar 

  • Chambers ST et al (1987) Dimethylthetin can substitute for glycine betaine as an osmoprotectant molecule for Escherichia coli. J Bacteriol 169:4845–4847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlton AJ et al (2008) Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy. Metabolomics 4:312–327

    Article  CAS  Google Scholar 

  • Chen W et al (2000) Glycine betaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L. Plant Cell Environ 23:609–618

    Article  CAS  Google Scholar 

  • Cheung CY, Ko BC (2013) NFAT5 in cellular adaptation to hypertonic stress – regulations and functional significance. J Mol Signal 8:1–9

    Article  CAS  Google Scholar 

  • Christian J (1955a) The influence of nutrition on the water relations of Salmonella oranienburg. Aust J Biol Sci 8:75–82

    CAS  Google Scholar 

  • Christian J (1955b) The water relations of growth and respiration of Salmonella oranienburg at 30 C. Aust J Biol Sci 8:490–497

    Article  CAS  Google Scholar 

  • Clow KA et al (2008) Elevated tissue betaine contents in developing rats are due to dietary betaine, not to synthesis. J Nutr 138:1641–1646

    CAS  PubMed  Google Scholar 

  • Conter A et al (1997) Role of DNA supercoiling and rpoS sigma factor in the osmotic and growth phase-dependent induction of the gene osmE of Escherichia coli K12. J Mol Biol 273:75–83

    Article  CAS  PubMed  Google Scholar 

  • Corona G et al (2015) Hyponatremia improvement is associated with a reduced risk of mortality: evidence from a meta-analysis. PLoS One 10:e0124105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Csonka LN (1988) Regulation of cytoplasmic proline levels in Salmonella typhimurium: effect of osmotic stress on synthesis, degradation, and cellular retention of proline. J Bacteriol 170:2374–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Csonka L, Epstein W (1996) Osmoregulation. Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM Press, Washington, DC, pp 1210–1223

    Google Scholar 

  • Culham DE et al (2000) The role of the carboxyl terminal alpha-helical coiled-coil domain in osmosensing by transporter ProP of Escherichia coli. J Mol Recognit 13:309–322

    Article  CAS  PubMed  Google Scholar 

  • Dawson KM, Baltz JM (1997) Organic osmolytes and embryos: substrates of the Gly and beta transport systems protect mouse zygotes against the effects of raised osmolarity. Biol Reprod 56:1550–1558

    Article  CAS  PubMed  Google Scholar 

  • Dinnbier U et al (1988) Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch Microbiol 150:348–357

    Article  CAS  PubMed  Google Scholar 

  • Eklund M et al (2006a) Effects of betaine and condensed molasses solubles on nitrogen balance and nutrient digestibility in piglets fed diets deficient in methionine and low in compatible osmolytes. Arch Anim Nutr 60:289–300

    Article  CAS  PubMed  Google Scholar 

  • Eklund M et al (2006b) Effects of betaine and condensed molasses solubles on ileal and total tract nutrient digestibilities in piglets. Acta Agric Scand Sect A 56:83–90

    CAS  Google Scholar 

  • Falkenberg P, Strøm AR (1990) Purification and characterization of osmoregulatory betaine aldehyde dehydrogenase of Escherichia coli. Biochim Biophys Acta Gen Subj 1034:253–259

    Article  CAS  Google Scholar 

  • Ferraris JD et al (1996) Betaine transporter cDNA cloning and effect of osmolytes on its mRNA induction. Am J Phys Cell Phys 270:C650–C654

    CAS  Google Scholar 

  • Fisher SK et al (2010) Receptor regulation of osmolyte homeostasis in neural cells. J Physiol 588:3355–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald LM, Szmant AM (1997) Biosynthesis of ‘essential’ amino acids by scleractinian corals. Biochem J 322(Pt 1):213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ et al (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Article  Google Scholar 

  • Freimark D et al (2011) Systematic parameter optimization of a Me 2 SO-and serum-free cryopreservation protocol for human mesenchymal stem cells. Cryobiology 63:67–75

    Article  CAS  PubMed  Google Scholar 

  • Friis MB et al (2008) Volume-sensitive NADPH oxidase activity and taurine efflux in NIH3T3 mouse fibroblasts. Am J Phys Cell Phys 294:C1552–C1565

    Article  CAS  Google Scholar 

  • Gallazzini M et al (2006) Neuropathy target esterase catalyzes osmoprotective renal synthesis of glycerophosphocholine in response to high NaCl. Proc Natl Acad Sci 103:15260–15265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z et al (1998) Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity. Plant Sci 135:149–159

    Article  CAS  Google Scholar 

  • Gardemann A et al (1992) Nervous control of liver metabolism and hemodynamics. Eur J Biochem 207:399–411

    Article  CAS  PubMed  Google Scholar 

  • Gates RD, Edmunds PJ (1999) The physiological mechanisms of acclimatization in tropical reef corals. Am Zool 39:30–43

    Article  Google Scholar 

  • Gates RD et al (1995) Free amino acids exhibit anthozoan “host factor” activity: they induce the release of photosynthate from symbiotic dinoflagellates in vitro. Proc Natl Acad Sci U S A 92:7430–7434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaxiola RA et al (2012) Genetic manipulation of a “vacuolar” H(+)-PPase: from salt tolerance to yield enhancement under phosphorus-deficient soils. Plant Physiol 159:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giuliani C, Peri A (2014) Effects of hyponatremia on the brain. J Clin Med 3:1163–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glenn EP et al (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Grallath S et al (2005) The AtProT family. Compatible solute transporters with similar substrate specificity but differential expression patterns. Plant Physiol 137:117–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grothe S et al (1986) Proline transport and osmotic stress response in Escherichia coli K-12. J Bacteriol 166:253–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamaguchi T et al (1991) Interaction of taurine with methionine: inhibition of myocardial phospholipid methyltransferase. J Cardiovasc Pharmacol 18:224–230

    Article  CAS  PubMed  Google Scholar 

  • Hammer MA, Baltz JM (2002) Betaine is a highly effective organic osmolyte but does not appear to be transported by established organic osmolyte transporters in mouse embryos. Mol Reprod Dev 62:195–202

    Article  CAS  PubMed  Google Scholar 

  • Hare PD et al (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Harries D, Rösgen J (2008) A practical guide on how osmolytes modulate macromolecular properties. Methods Cell Biol 84:679–735

    Article  CAS  PubMed  Google Scholar 

  • Häussinger D (1996) The role of cellular hydration in the regulation of cell function. Biochem J 313:697

    Article  PubMed  PubMed Central  Google Scholar 

  • Häussinger D (2004) Neural control of hepatic osmolytes and parenchymal cell hydration. Anat Rec A: Discov Mol Cell Evol Biol 280:893–900

    Article  CAS  Google Scholar 

  • Haussinger D et al (1994) Regulation of cell function by the cellular hydration state. Am J Physiol Endocrinol Metab 267:E343–E355

    CAS  Google Scholar 

  • Hengge-Aronis R (1996) Back to log phase: sigma S as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol Microbiol 21:887–893

    Article  CAS  PubMed  Google Scholar 

  • Hoque MA et al (2007) Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J Plant Physiol 164:553–561

    Article  CAS  PubMed  Google Scholar 

  • Huang CG et al (2007) Functional analysis of the aquaporin gene family in Caenorhabditis elegans. Am J Phys Cell Phys 292:C1867–C1873

    Article  CAS  Google Scholar 

  • Huxtable R (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    CAS  PubMed  Google Scholar 

  • Huxtable R, Bressler R (1973) Effect of taurine on a muscle intracellular membrane. Biochim Biophys Acta (BBA) Biomembr 323:573–583

    Article  CAS  Google Scholar 

  • Ignatova Z, Gierasch LM (2006) Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc Natl Acad Sci 103:13357–13361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishitani M et al (1995) Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid. Plant Mol Biol 27:307–315

    Article  CAS  PubMed  Google Scholar 

  • Jackson-Atogi R et al (2013) Distinctive solvation patterns make renal osmolytes diverse. Biophys J 105:2166–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi V et al (2010) Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids 39:933–947

    Article  CAS  PubMed  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330

    Article  CAS  PubMed  Google Scholar 

  • Kettunen H et al (2001) Betaine aids in the osmoregulation of duodenal epithelium of broiler chicks, and affects the movement of water across the small intestinal epithelium in vitro. Comp Biochem Physiol A Mol Integr Physiol 129:595–603

    Article  CAS  PubMed  Google Scholar 

  • Khan SH et al (2010) Naturally occurring organic osmolytes: from cell physiology to disease prevention. IUBMB Life 62:891–895

    Article  CAS  PubMed  Google Scholar 

  • Kidd M et al (1997) Nutritional and osmoregulatory functions of betaine. Worlds Poult Sc J 53:125–139

    Article  Google Scholar 

  • Kimelberg HK (2004) Water homeostasis in the brain: basic concepts. Neuroscience 129:851–860

    Article  CAS  PubMed  Google Scholar 

  • Klasing KC et al (2002) Dietary betaine increases intraepithelial lymphocytes in the duodenum of coccidia-infected chicks and increases functional properties of phagocytes. J Nutr 132:2274–2282

    CAS  PubMed  Google Scholar 

  • Koštál V et al (2011) Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proc Natl Acad Sci 108:13041–13046

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramer R (2010) Bacterial stimulus perception and signal transduction: response to osmotic stress. Chem Rec 10:217–229

    Article  PubMed  CAS  Google Scholar 

  • Kurz AK et al (1998) Osmotic regulation of the heat shock response in primary rat hepatocytes. Hepatology 28:774–781

    Article  CAS  PubMed  Google Scholar 

  • Kushner D (1993) Growth and nutrition of halophilic bacteria. Biol Halophi Bact 15:87–103

    Google Scholar 

  • Kwon HM et al (1992) Cloning of the cDNa for a Na+/myo-inositol cotransporter, a hypertonicity stress protein. J Biol Chem 267:6297–6301

    CAS  PubMed  Google Scholar 

  • Kwon ED et al (1995) Osmoregulation of GPC:choline phosphodiesterase in MDCK cells: different effects of urea and NaCl. Am J Phys 269:C35–C41

    CAS  Google Scholar 

  • Lamark T et al (1996) The complex bet promoters of Escherichia coli: regulation by oxygen (ArcA), choline (BetI), and osmotic stress. J Bacteriol 178:1655–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert IH (2003) Reactive oxygen species regulate swelling-induced taurine efflux in NIH3T3 mouse fibroblasts. J Membr Biol 192:19–32

    Article  CAS  PubMed  Google Scholar 

  • Lamitina ST et al (2004) Adaptation of the nematode Caenorhabditis elegans to extreme osmotic stress. Am J Phys Cell Phys 286:C785–C791

    Article  CAS  Google Scholar 

  • Lamitina T et al (2006) Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression. Proc Natl Acad Sci U S A 103:12173–12178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang F et al (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    CAS  PubMed  Google Scholar 

  • Larsen H (1962) Halophilism. Bacteria 4:297–342

    CAS  Google Scholar 

  • Larsen P et al (1987) Osmoregulation in Escherichia coli by accumulation of organic osmolytes: betaines, glutamic acid, and trehalose. Arch Microbiol 147:1–7

    Article  CAS  PubMed  Google Scholar 

  • Lauf PK, Adragna NC (2001) K-Cl cotransport: properties and molecular mechanism. Cell Physiol Biochem 10:341–354

    Article  Google Scholar 

  • Lee JH et al (1994) Organic osmolytes in the brain of an infant with hypernatremia. N Engl J Med 331:439–442

    Article  CAS  PubMed  Google Scholar 

  • Levillain O et al (2001) Influence of dehydration on glycerophosphorylcholine and choline distribution along the rat nephron. Pflugers Arch 442:218–222

    Article  CAS  PubMed  Google Scholar 

  • Lien YH et al (1990) Effects of hypernatremia on organic brain osmoles. J Clin Invest 85:1427–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lien Y et al (1991) Study of brain electrolytes and organic osmolytes during correction of chronic hyponatremia. Implications for the pathogenesis of central pontine myelinolysis. J Clin Investig 88:303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llanes A et al (2013) Different sodium salts cause different solute accumulation in the halophyte Prosopis strombulifera. Plant Biol (Stuttg) 15(Suppl 1):118–125

    Article  CAS  Google Scholar 

  • Loescher WH et al (1992) Mannitol synthesis in higher plants: evidence for the role and characterization of a NADPH-Dependent Mannose 6-Phosphate Reductase. Plant Physiol 98:1396–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubec B et al (1997) Distribution and disappearance of the radiolabeled carbon derived from L-arginine and taurine in the mouse. Life Sci 60:2373–2381

    Article  CAS  PubMed  Google Scholar 

  • Lunn JE et al (2014) Trehalose metabolism in plants. Plant J 79:544–567

    Article  CAS  PubMed  Google Scholar 

  • Lv W-T et al (2011) Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Plant Physiol 156:1921–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamedov M et al (1993) Effects of glycine betaine and unsaturation of membrane lipids on heat stability of photosynthetic electron-transport and phosphorylation reactions in Synechocystis PCC6803. Biochim Biophys Acta (BBA) Bioenergetics 1142:1–5

    Article  CAS  Google Scholar 

  • Matysik J et al (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Mayfield AB, Gates RD (2007) Osmoregulation in anthozoan–dinoflagellate symbiosis. Comp Biochem Physiol A Mol Integr Physiol 147:1–10

    Article  PubMed  CAS  Google Scholar 

  • Measures JC (1975) Role of amino acids in osmoregulation of non-halophilic bacteria. Nature 257:398–400

    Article  CAS  PubMed  Google Scholar 

  • Miller G et al (2005) Responsive modes of Medicago sativa proline dehydrogenase genes during salt stress and recovery dictate free proline accumulation. Planta 222:70–79

    Article  CAS  PubMed  Google Scholar 

  • Miller G et al (2009) Unraveling Δ1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem 284:26482–26492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mongin P (1976) Ionic constituents and osmolality of the small intestinal fluids of the laying hen. Br Poult Sci 17:383–392

    Article  CAS  PubMed  Google Scholar 

  • Mongin AA, Orlov SN (2001) Mechanisms of cell volume regulation and possible nature of the cell volume sensor. Pathophysiology 8:77–88

    Article  CAS  PubMed  Google Scholar 

  • Muscatine L (1967) Glycerol excretion by symbiotic algae from corals and tridacna and its control by the host. Science 156:516–519

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi T et al (1990) Osmoregulation of betaine transport in mammalian renal medullary cells. Am J Phys 258:F1061–F1067

    CAS  Google Scholar 

  • Nakashima K et al (1993) Signal transduction between the two regulatory components involved in the regulation of the kdpABC operon in Escherichia coli: phosphorylation-dependent functioning of the positive regulator, KdpE. Mol Microbiol 7:109–116

    Article  CAS  PubMed  Google Scholar 

  • O’Neill WC (1999) Physiological significance of volume-regulatory transporters. Am J Phys Cell Phys 276:C995–C1011

    Google Scholar 

  • Papadopoulos MC, Verkman AS (2007) Aquaporin-4 and brain edema. Pediatr Nephrol 22:778–784

    Article  PubMed  Google Scholar 

  • Papageorgiou GC et al (1991) Protection of the oxygen-evolving photosystem II complex by glycine betaine. Biochim Biophys Acta (BBA) Bioenergetics 1057:361–366

    Article  CAS  Google Scholar 

  • Parsegian V et al (2000) Osmotic stress, crowding, preferential hydration, and binding: a comparison of perspectives. Proc Natl Acad Sci 97:3987–3992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasantes-Morales H et al (2001) Amino acid osmolytes in regulatory volume decrease and isovolumetric regulation in brain cells: contribution and mechanisms. Cell Physiol Biochem 10:361–370

    Article  Google Scholar 

  • Peter H et al (1998) Osmo-sensing by N-and C-terminal extensions of the glycine betaine uptake system BetP of Corynebacterium glutamicum. J Biol Chem 273:2567–2574

    Article  CAS  PubMed  Google Scholar 

  • Peterson DP et al (1992) Effects of dietary protein and salt on rat renal osmolytes: covariation in urea and GPC contents. American Journal of Physiology-Renal Physiology 263:F594–F600

    CAS  Google Scholar 

  • Pfluger K, Muller V (2004) Transport of compatible solutes in extremophiles. J Bioenerg Biomembr 36:17–24

    Article  CAS  PubMed  Google Scholar 

  • Ponnu J et al (2011) Trehalose-6-Phosphate: connecting plant metabolism and development. Front Plant Sci 2:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratt LA et al (1996) From acids to osmZ: multiple factors influence synthesis of the OmpF and OmpC porins in Escherichia coli. Mol Microbiol 20:911–917

    Article  CAS  PubMed  Google Scholar 

  • Rentsch D et al (1996) Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell 8:1437–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts J et al (2001) Ammonium metabolism in the symbiotic sea anemone Anemonia viridis. Hydrobiologia 461:25–35

    Article  Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycine betaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88

    Article  CAS  PubMed  Google Scholar 

  • Samuel D et al (2000) Proline inhibits aggregation during protein refolding. Protein Sci 9:344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savoure A et al (1995) Isolation, characterization, and chromosomal location of a gene encoding the delta 1-pyrroline-5-carboxylate synthetase in Arabidopsis thaliana. FEBS Lett 372:13–19

    Article  CAS  PubMed  Google Scholar 

  • Schaffer S et al (1995) Mechanisms underlying taurine-mediated alterations in membrane function. Amino Acids 8:231–246

    Article  CAS  PubMed  Google Scholar 

  • Schaffer S et al (2000) Role of osmoregulation in the actions of taurine. Amino Acids 19:527–546

    Article  CAS  PubMed  Google Scholar 

  • Seemann JR et al (1986) Temperature and leaf osmotic potential as factors in the acclimation of photosynthesis to high temperature in desert plants. Plant Physiol 80:926–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta S et al (2008) Inositol methyl transferase from a halophytic wild rice, Porteresia coarctata Roxb. (Tateoka): regulation of pinitol synthesis under abiotic stress. Plant Cell Environ 31:1442–1459

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Shick JM (2012) A functional biology of sea anemones. Springer Science & Business Media, London/New York

    Google Scholar 

  • Shimazu T (1996) Progress and perspective of neuro-hepatology. In: Liver innervation and neural control of hepatic function. John Libbey & Company Ltd, London, pp 3–13

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Sies H (1978) The use of perfusion of liver and other organs for the study of microsomal electron-transport and cytochrome P-450 systems. Methods Enzymol 52:48–59

    Article  CAS  PubMed  Google Scholar 

  • Siljander-Rasi H et al (2003) Effect of equi-molar dietary betaine and choline addition on performance, carcass quality and physiological parameters of pigs. J Anim Sci 76:55–62

    CAS  Google Scholar 

  • Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129:877–896

    Article  CAS  PubMed  Google Scholar 

  • Siripornadulsil S et al (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sleator RD, Hill C (2002) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71

    Article  CAS  PubMed  Google Scholar 

  • Smardo F et al (1992) Kidney aldose reductase gene transcription is osmotically regulated. Am J Phys Cell Phys 262:C776–C782

    CAS  Google Scholar 

  • Street TO et al (2006) A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci U S A 103:13997–14002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strom AR, Kaasen I (1993) Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol 8:205–210

    Article  CAS  PubMed  Google Scholar 

  • Styrvold OB, Strøm A (1991) Synthesis, accumulation, and excretion of trehalose in osmotically stressed Escherichia coli K-12 strains: influence of amber suppressors and function of the periplasmic trehalase. J Bacteriol 173:1187–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson R, Hoegh-Guldberg O (1998) Amino acid synthesis in the symbiotic sea anemone Aiptasia pulchella. Mar Biol 131:83–93

    Article  CAS  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Tarkowski ŁP, Van den Ende W (2015) Cold tolerance triggered by soluble sugars: a multifaceted countermeasure. Front Plant Sci 6:203

    Article  PubMed  PubMed Central  Google Scholar 

  • Thevelein JM (1984) Regulation of trehalose mobilization in fungi. Microbiol Rev 48:42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timasheff SN (2002) Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc Natl Acad Sci 99:9721–9726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida S et al (1992) Molecular cloning of the cDNA for an MDCK cell Na(+)- and Cl(−)-dependent taurine transporter that is regulated by hypertonicity. Proc Natl Acad Sci U S A 89:8230–8234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbalis JG (2010) Brain volume regulation in response to changes in osmolality. Neuroscience 168:862–870

    Article  CAS  PubMed  Google Scholar 

  • Virgilio C et al (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. Eur J Biochem 219:179–186

    Article  PubMed  Google Scholar 

  • Vom Dahl S et al (1999) Release of osmolytes from perfused rat liver on perivascular nerve stimulation: α-adrenergic control of osmolyte efflux from parenchymal and nonparenchymal liver cells. Hepatology 29:195–204

    Article  CAS  PubMed  Google Scholar 

  • Warming E. (1895) Oecology of Plants: An Introduction to the Study of Plant Communities.Clarendon Press, Oxford, UK, 335pp.

    Google Scholar 

  • Warskulat U et al (1997a) Myo-inositol is an osmolyte in rat liver macrophages (Kupffer cells) but not in RAW 264.7 mouse macrophages. Biochem J 326:289–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warskulat U et al (1997b) Osmoregulated taurine transport in H4IIE hepatoma cells and perfused rat liver. Biochem J 321:683–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wehner F et al (2003) Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. In: Reviews of physiology, biochemistry and pharmacology. Springer, Berlin, pp 1–80

    Chapter  Google Scholar 

  • Wettstein M, HAussinger D (1997) Cytoprotection by the osmolytes βine and taurine in ischemia-reoxygenation injury in the perfused rat liver. Hepatology 26:1560–1566

    CAS  PubMed  Google Scholar 

  • Williams PD et al (2006) Functionality and the evolution of marginal stability in proteins: inferences from lattice simulations. Evol Biol Online 2:91–101

    Google Scholar 

  • Wondrak GT et al (2005) Identification of quenchers of photoexcited states as novel agents for skin photoprotection. J Pharmacol Exp Ther 312:482–491

    Article  CAS  PubMed  Google Scholar 

  • Wood JM (2015) Bacterial responses to osmotic challenges. J Gen Physiol 145:381–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yancey PH (1994) Compatible and counteracting solutes. In: Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton, pp 81–109

    Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  CAS  PubMed  Google Scholar 

  • Yancey PH, Siebenaller JF (2015) Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. J Exp Biol 218:1880–1896

    Article  PubMed  Google Scholar 

  • Yancey PH et al (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Yoshiba Y et al (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Zablocki K et al (1991) Accumulation of glycerophosphocholine (GPC) by renal cells: osmotic regulation of GPC:choline phosphodiesterase. Proc Natl Acad Sci 88:7820–7824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavodszky P et al (1998) Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci U S A 95:7406–7411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F et al (1996) Identification of betaine as an osmolyte in rat liver macrophages (Kupffer cells). Gastroenterology 110:1543–1552

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitesh Kumar Poddar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wijayasinghe, Y.S., Tyagi, A., Poddar, N.K. (2017). Regulation of Cell Volume by Osmolytes. In: Rajendrakumar Singh, L., Dar, T. (eds) Cellular Osmolytes. Springer, Singapore. https://doi.org/10.1007/978-981-10-3707-8_9

Download citation

Publish with us

Policies and ethics