Advertisement

Crosstalk Between Osmolytes and Cellular Chaperones: Examples in Saccharomyces cerevisiae

  • Anusha R. Pallapati
  • Eshita Das
  • Ipsita RoyEmail author
Chapter

Abstract

Osmolytes and chaperones form two distinct arms of the cellular proteostasis network. They help the cell in adapting to a variety of stress conditions including changes in temperature, salinity, pH, redox balance, nutrient deprivation, etc. Osmolytes, also called compatible solutes, like disaccharides, amino acids and derivatives, are produced in the cell in response to stress and help stabilize proteins by a number of different mechanisms. Some of the chaperones and chaperonins perform basal functions in the cell, but their major role lies in protecting proteins and other biomolecules during stress conditions. They mainly comprise of heat shock proteins (Hsps) controlled by the heat shock factor (Hsf), various isomerases and other protein folding aids. The baker’s yeast Saccharomyces cerevisiae has been widely adopted as a model for higher organisms. Several of the biological pathways related to cellular stress response machinery are strongly conserved between yeast and humans, and yeast provides an excellent model to study proteotoxicity. Glycerol and trehalose are the major osmolytes whose levels are elevated in stressed yeast cells. The correlation between levels of compatible solutes and molecular chaperones under stress conditions has been studied extensively in yeast and has raised many interesting questions. A key issue is whether trehalose itself acts as the cytoprotectant or if the trehalose synthetic enzyme, Tps1, provides this function. The parallel relation between thermotolerance, trehalose and the protein remodelling factor Hsp104 observed in many cases has pointed to a complex association between the molecular and pseudo-chaperones. This chapter discusses some of these observations and attempts to provide a rational explanation of the interaction between the different components of the cellular stress response machinery using the budding yeast as a model system.

Keywords

Chaperones Glycerol Heat shock proteins Osmolytes Saccharomyces cerevisiae Trehalose Unfolded protein response 

Notes

Acknowledgements

Work in authors’ lab was supported by the Department of Biotechnology and Science and Engineering Research Board. ARP and ED acknowledge the award of junior research fellowships by NIPER S.A.S. Nagar and Department of Biotechnology (Govt. of India), respectively.

References

  1. Aguilera J, Randez-Gil F, Prieto JA (2007) Cold response in Saccharomyces cerevisiae: new functions for old mechanisms. FEMS Microbiol Rev 31:327–341CrossRefPubMedGoogle Scholar
  2. Arakawa T, Ejima D, Kita Y, Tsumoto K (2006) Small molecule pharmacological chaperones: from thermodynamic stabilization to pharmaceutical drugs. Biochim Biophys Acta 1764(11):1677–1687CrossRefPubMedGoogle Scholar
  3. Auluck PK, Chan HYE, Trojanowski JQ, Lee VMY, Bonini NM (2002) Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295(5556):865–868CrossRefPubMedGoogle Scholar
  4. Bartlett AI, Radford SE (2009) An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms. Nat Struct Mol Biol 16(6):582–588CrossRefPubMedGoogle Scholar
  5. Bhattacharyya T, Karnezis AN, Murphy SP, Hoang T, Freeman BC, Phillips B (1995) Cloning and subcellular-localization of human mitochondrial HSP70. J Biol Chem 270(4):1705–1710CrossRefPubMedGoogle Scholar
  6. Blair LJ, Baker JD, Sabbagh JJ, Dickey CA (2015) The emerging role of peptidyl-prolyl isomerase chaperones in tau oligomerization, amyloid processing and Alzheimer’s disease. J Neurochem 133(1):1–13CrossRefPubMedPubMedCentralGoogle Scholar
  7. Braig K, Simon M, Furuya F, Hainfeld JF, Horwich AL (1993) A polypeptide bound by the chaperonin GrroEL is localized within a central cavity. Proc Natl Acad Sci U S A 90(9):3978–3982CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125(3):443–451CrossRefPubMedGoogle Scholar
  9. Burg MB, Ferraris JD (2008) Intracellular organic osmolytes: function and regulation. J Biol Chem 283(12):7309–7313CrossRefPubMedPubMedCentralGoogle Scholar
  10. Castells-Roca L, Garcia-Martinez J, Moreno J, Herrero E, Belli G, Perez-Ortin JE (2011) Heat shock response in yeast involves changes in both transcription rates and mRNA stabilities. PLoS One 6(2):e17272CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chaudhary RK, Kardani J, Singh K, Banerjee R, Roy I (2013) Deciphering the roles of trehalose and Hsp104 in the inhibition of aggregation of mutant huntingtin in a yeast model of Huntington’s disease. Neuromolecular Med 16(2):280–291CrossRefPubMedGoogle Scholar
  12. Chaudhry C, Farr GW, Todd MJ, Rye HS, Brunger AT, Adams PD, Horwich AL, Sigler PB (2003) Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics. EMBO J 22(19):4877–4887CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science 268(5212):880–884CrossRefPubMedGoogle Scholar
  14. Conlin LK, Nelson HC (2007) The natural osmolyte trehalose is a positive regulator of the heat-induced activity of yeast heat shock transcription factor. Mol Cell Biol 27(4):1505–1515CrossRefPubMedGoogle Scholar
  15. Cox BS, Byrne LJ, Tuite MF (2007) Prion stability. Prion 1(3):170–178CrossRefPubMedPubMedCentralGoogle Scholar
  16. Craig EA, Jacobsen K (1984) Mutations of the heat inducible 70 kilodalton genes of yeast confer temperature sensitive growth. Cell 38(3):841–849CrossRefPubMedGoogle Scholar
  17. Diamant S, Eliahu N, Rosenthal D, Goloubinoff P (2001) Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276(43):39586–39591CrossRefPubMedGoogle Scholar
  18. Dobson CM, Sali A, Karplus M (2009) Protein folding: a perspective from theory and experiment. Angew Chem Int Edn Engl 37(7):868–893CrossRefGoogle Scholar
  19. Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18(6):756–764CrossRefPubMedGoogle Scholar
  20. Elliott B, Haltiwanger RS, Futcher B (1996) Synergy between trehalose and Hsp104 for thermotolerance in Saccharomyces cerevisiae. Genetics 144(3):923–933PubMedPubMedCentralGoogle Scholar
  21. Ellis RJ, Minton AP (2006) Protein aggregation in crowded environments. Biol Chem 387(5):485–497CrossRefPubMedGoogle Scholar
  22. Fenton WA, Horwich AL (2005) First glimpses of a chaperonin-bound folding intermediate. Proc Natl Acad Sci U S A 102(39):13715–13716CrossRefGoogle Scholar
  23. Ferreira PC, Ness F, Edwards SR, Cox BS, Tuite MF (2001) The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol Microbiol 40(6):1357–1369CrossRefPubMedGoogle Scholar
  24. Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P (2013) Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol 5(3):a013169CrossRefPubMedPubMedCentralGoogle Scholar
  25. Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99(25):15898–15903CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gibney PA, Schieler A, Chen JC, Rabinowitz JD, Botstein D (2015) Characterizing the in vivo role of trehalose in Saccharomyces cerevisiae using the AGT1 transporter. Proc Natl Acad Sci U S A 112(19):6116–6121CrossRefPubMedPubMedCentralGoogle Scholar
  27. Goloubinoff P, Christeller JT, Gatenby AA, Lorimer GH (1989) Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature 342(6252):884–889CrossRefPubMedGoogle Scholar
  28. Guyot S, Ferret E, Gervais P (2005) Responses of Saccharomyces cerevisiae to thermal stress. Biotechnol Bioeng 92(4):403–409CrossRefPubMedGoogle Scholar
  29. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332CrossRefPubMedGoogle Scholar
  30. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858CrossRefPubMedGoogle Scholar
  31. Hashikawa N, Sakurai H (2004) Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element. Mol Cell Biol 24(9):3648–3659CrossRefPubMedPubMedCentralGoogle Scholar
  32. Haslbeck M, Vierling E (2015) A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 427(7):1537–1548CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hetz C, Chevet E, Harding HP (2013) Targeting the unfolded protein response in disease. Nat Rev Drug Discov 12:703–719CrossRefPubMedGoogle Scholar
  34. Hohmann S (2009) Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett 583(24):4025–4029CrossRefPubMedGoogle Scholar
  35. Hohmann S (2002) Osmotic adaptation in yeast – Control of the yeast osmolyte system. Int Rev Cytol 215:149–187CrossRefPubMedGoogle Scholar
  36. Hottiger T, Boller T, Wiemken A (1987) Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett 220(1):113–115CrossRefPubMedGoogle Scholar
  37. Humphreys DT, Carver JA, Easterbrook-Smith SB, Wilson MR (1999) Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 274(11):6875–6881CrossRefPubMedGoogle Scholar
  38. Hunt JF, Weaver AJ, Landry SJ, Gierasch L (1996) The crystal structure of the GroES co-chaperonin at 2.8 Å resolution. Nature 379(6560):37–45CrossRefPubMedGoogle Scholar
  39. Ignatova Z, Gierasch LM (2007) Effects of osmolytes on protein folding and aggregation in cells. Methods Enzymol 428:355–372CrossRefPubMedGoogle Scholar
  40. Iwahashi H, Nwaka S, Obuchi K, Komatsu Y (1998) Evidence for the interplay between trehalose metabolism and Hsp104 in yeast. Appl Environ Microbiol 64(11):4614–4617PubMedPubMedCentralGoogle Scholar
  41. Kampinga HH, Bergink S (2016) Heat shock proteins as potential targets for protective strategies in neurodegeneration. Lancet Neurol 15(7):748–759CrossRefPubMedGoogle Scholar
  42. Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11(8):579–559CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kejžar A, Cibic M, Grøtli M, Plemenitaš A, Lenassi M (2015) The unique characteristics of HOG pathway MAPKs in the extremely halotolerant Hortaea werneckii. FEMS Microbiol Lett 362(8):fnv046PubMedGoogle Scholar
  44. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355CrossRefPubMedGoogle Scholar
  45. Kobayashi N, McEntee K (1990) Evidence for a heat shock transcription factor-independent mechanism for heat shock induction of transcription in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 87(17):6550–6554CrossRefPubMedPubMedCentralGoogle Scholar
  46. Labbadia J, Morimoto IR (2015) The biology of proteostasis in aging and disease. Annu Rev Biochem 84:435–464CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lamech LT, Haynes CM (2015) The unpredictability of prolonged activation of stress response pathways. J Cell Biol 209(6):781–787CrossRefPubMedPubMedCentralGoogle Scholar
  48. Langer T, Lu C, Echols H, Flanagan J, Hayer MK, Hartl FU (1992a) Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone mediated protein folding. Nature 356(6371):683–689CrossRefPubMedGoogle Scholar
  49. Langer T, Pfeifer G, Martin J, Baumeister W, Hartl FU (1992b) Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J 11(13):4757–4765PubMedPubMedCentralGoogle Scholar
  50. Levy SF, Ziv N, Siegal ML (2012) Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. PLoS Biol 10(5):e1001325CrossRefPubMedPubMedCentralGoogle Scholar
  51. Li J, Buchner J (2013) Structure, function and regulation of the hsp90 machinery. Biomed J 36(3):106–117CrossRefPubMedGoogle Scholar
  52. Li L, Ye Y, Pan L, Zhu Y, Zheng S, Lin Y (2009) The induction of trehalose and glycerol in Saccharomyces cerevisiae in response to various stresses. Biochem Biophys Res Commun 387(4):778–783CrossRefPubMedGoogle Scholar
  53. Lo Bianco C, Shorter J, Regulier E, Lashuel H, Iwatsubo T, Lindquist S, Aebischer P (2008) Hsp104 antagonizes α-synuclein aggregation and reduces dopaminergic degeneration in a rat model of Parkinson disease. J Clin Invest 118(9):3087–3097CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lum R, Tkach JM, Vierling E, Glover JR (2004) Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J Biol Chem 279(28):29139–29146CrossRefPubMedGoogle Scholar
  55. Macario AJ, Conway de Macario E (2005) Sick chaperones, cellular stress, and disease. N Engl J Med 353(14):1489–1501CrossRefPubMedGoogle Scholar
  56. MacLellan RJ, Tunnah L, Barnett D, Wright PA, MacCormack T, Currie S (2015) Chaperone roles for TMAO and HSP70 during hyposmotic stress in the spiny dogfish shark (Squalus acanthias). J Comp Physiol B 185(7):729–740CrossRefPubMedGoogle Scholar
  57. Mande SC, Mehra V, Bloom BR, Hol WG (1996) Structure of the heat shock protein chaperonin-10 of Mycobacterium leprae. Science 271(5246):203–207CrossRefPubMedGoogle Scholar
  58. Mayer MP (2010) Gymnastics of molecular chaperones. Mol Cell 39:321–331CrossRefPubMedGoogle Scholar
  59. Morano KA, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190(4):1157–1195CrossRefPubMedPubMedCentralGoogle Scholar
  60. Morano KA, Liu PC, Thiele DJ (1998) Protein chaperones and the heat shock response in Saccharomyces cerevisiae. Curr Opin Microbiol 1(2):197–203CrossRefPubMedGoogle Scholar
  61. Mori K (2015) The unfolded protein response: the dawn of a new field. Proc Jpn Acad Ser B Phys Biol Sci 91(9):469–480CrossRefPubMedPubMedCentralGoogle Scholar
  62. Neves MJ, Francois J (1992) On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae. Biochem J 288(Pt 3):859–864CrossRefPubMedPubMedCentralGoogle Scholar
  63. Nwaka S, Kopp M, Burgert M, Deuchler I, Kienle I, Holzer H (1994) Is thermotolerance of yeast dependent on trehalose accumulation? FEBS Lett 344(2–3):225–228CrossRefPubMedGoogle Scholar
  64. O’Rourke SM, Herskowitz I, O’Shea EK (2002) Yeast go the whole HOG for the hyperosmotic response. Trends Genet 18(8):405–412CrossRefPubMedGoogle Scholar
  65. Ouyang Y, Xu Q, Mitsui K, Motizuki M, Xu Z (2009) Human trehalase is a stress responsive protein in Saccharomyces cerevisiae. Biochem Biophys Res Commun 379(2):621–625CrossRefPubMedGoogle Scholar
  66. Panadero J, Pallotti C, Rodriguez-Vargas S, Randez-Gil F, Prieto JA (2006) A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae. J Biol Chem 281(8):4638–4645CrossRefPubMedGoogle Scholar
  67. Patil C, Walter P (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 13(3):349–356CrossRefPubMedGoogle Scholar
  68. Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294CrossRefPubMedGoogle Scholar
  69. Petitjean M, Teste MA, Francois JM, Parrou JL (2015) Yeast tolerance to various stresses relies on the trehalose-6p synthase (Tps1) protein, not on trehalose. J Biol Chem 290(26):16177–16190CrossRefPubMedPubMedCentralGoogle Scholar
  70. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991CrossRefPubMedGoogle Scholar
  71. Rodriguez-Pena JM, Garcia R, Nombela C, Arroyo J (2010) The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: a yeast dialogue between MAPK routes. Yeast 27(8):495–502CrossRefPubMedGoogle Scholar
  72. Rudiger S, Buchberger A, Bukau B (1997) Interaction of Hsp70 chaperones with substrates. Nat Struct Biol 4(5):342–349CrossRefPubMedGoogle Scholar
  73. Saleh AA, Gune US, Chaudhary RK, Turakhiya AP, Roy I (2014) Roles of Hsp104 and trehalose in solubilisation of mutant huntingtin in heat shocked Saccharomyces cerevisiae cells. Biochim Biophys Acta 1843(4):746–757CrossRefPubMedGoogle Scholar
  74. Sanchez Y, Lindquist SL (1990) HSP104 required for induced thermotolerance. Science 248(4959):1112–1115CrossRefPubMedGoogle Scholar
  75. Serneels J, Tournu H, Van Dijck P (2012) Tight control of trehalose content is required for efficient heat-induced cell elongation in Candida albicans. J Biol Chem 287(44):36873–36882CrossRefPubMedPubMedCentralGoogle Scholar
  76. Seufert W, Jentsch S (1990) Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J 9(2):543–550PubMedPubMedCentralGoogle Scholar
  77. Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1(5):639–648CrossRefPubMedGoogle Scholar
  78. Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115(3):433–447CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sorger PK, Lewis MJ, Pelham HRB (1987) Heat shock factor is regulated differently in yeast and HeLa cells. Nature 329(6134):81–84CrossRefPubMedGoogle Scholar
  80. Sorger PK, Pelham HR (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54(6):855–864CrossRefPubMedGoogle Scholar
  81. Sweeny EA, Shorter J (2016) Mechanistic and structural insights into the prion-disaggregase activity of Hsp104. J Mol Biol 428(9 Pt B):1870–1885CrossRefPubMedGoogle Scholar
  82. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11(7):515–528CrossRefPubMedGoogle Scholar
  83. Tapia H, Koshland DE (2014) Trehalose is a versatile and long-lived chaperone for desiccation tolerance. Curr Biol 24(23):2758–2766CrossRefPubMedGoogle Scholar
  84. Travers K, Patil C, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101(3):249–258CrossRefPubMedGoogle Scholar
  85. Treweek TM, Rekas A, Walker MJ, Carver JA (2010) A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, αA- and αB-crystallin. Exp Eye Res 91(5):691–695CrossRefPubMedGoogle Scholar
  86. Voziyan PA, Fisher MT (2000) Chaperonin-assisted folding of glutamine synthetase under nonpermissive conditions: off-pathway aggregation propensity does not determine the co-chaperonin requirement. Protein Sci 9(12):2405–2412CrossRefPubMedPubMedCentralGoogle Scholar
  87. Wang S, Kaufman RJ (2012) The impact of the unfolded protein response on human disease. J Cell Biol 197(7):857–867CrossRefPubMedPubMedCentralGoogle Scholar
  88. Wang X, Venable J, LaPointe P, Hutt DM, Koulov AV, Coppinger J, Gurkan C, Kellner W, Matteson J, Plutner H, Riordan JR, Kelly JW, Yates JR 3rd, Balch WE (2006) Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127(4):803–815CrossRefPubMedGoogle Scholar
  89. Weindling E, Bar-Nun S (2015) Sir2 links the unfolded protein response and the heat shock response in a stress response network. Biochem Biophys Res Commun 457:473–478CrossRefPubMedGoogle Scholar
  90. Wiederrecht G, Seto D, Parker CS (1988) Isolation of the gene encoding the Saccharomyces cerevisiae heat shock transcription factor. Cell 54(6):841–853CrossRefPubMedGoogle Scholar
  91. Winkler K, Kienle I, Burgert M, Wagner JC, Holzer H (1991) Metabolic regulation of the trehalose content of vegetative yeast. FEBS Lett 29(2):269–272CrossRefGoogle Scholar
  92. Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388(6644):741–750CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of BiotechnologyNational Institute of Pharmaceutical Education and Research (NIPER)PunjabIndia

Personalised recommendations