Skip to main content

Physico-Chemical Properties of the Stem Cell Niche

  • Chapter
  • First Online:
Regenerative Medicine: Laboratory to Clinic

Abstract

It has been unequivocally demonstrated that cell-extrinsic agents play important roles in stem cell fate decisions, along with their intrinsic genetic makeup. There have been quite extensive studies on soluble factors which are found essentially in the extracellular matrix, in the case of adult as well as embryonic stem cells. Recent work has begun to elucidate that in addition to these biochemical signals from coordinated interactions with soluble factors as well as the extracellular matrix (ECM) and neighbouring cells, mechanical factors affect the stem cell proliferation, survival, migration and differentiation. Surface adhesion receptors mediate the cell adhesion to the ECM and to adjacent cells, e.g. integrins and cadherins, respectively. Matrix stiffness, elasticity and mechanical stress constitute the physical properties of the stem cell niche, which can regulate the function of stem cells. Architecture of the niche wherein the stem cells reside is regulated by biochemical and physicochemical attributes that integrate with the mechanical cues to create a microenvironment for the proliferation and nourishment of stem cells. Engineering the scaffold and biomimetic matrices for culturing stem cells therefore is the next step in advanced stem cell research. This together with the spatiotemporal insights into the regulation of stem cell function is dealt with in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AGM:

Aorta-gonad-mesonephros

CFU-F:

Colony-forming units-fibroblasts

EBL:

Electron beam lithography

ESCs:

Embryonic Stem cells

ICM:

Inner cell mass

NMM II:

Nonmuscle myosin II

OCN:

Osteocalcin

OPN:

Osteopontin

PDMS:

Polydimethylsiloxane

PEGDA:

Polyethylene glycol diacrylate

TE:

Trophectoderm

References

  1. Pedersen RA, Wu K, Balakier H. Origin of the inner cell mass in mouse embryos: cell lineage analysis by microinjection. Dev Biol. 1986;117:581–95.

    Article  CAS  PubMed  Google Scholar 

  2. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.

    Article  CAS  PubMed  Google Scholar 

  3. Scadden DT. Nice neighborhood: emerging concepts of the stem cell niche. Cell. 2014;157:41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Park D, Spencer JA, Koh BI, et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell. 2012;10:259–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  6. Biswas A, Hutchins R. Embryonic stem cells. Stem Cells Dev. 2007;16:213–22.

    Article  CAS  PubMed  Google Scholar 

  7. Xu C, Inokuma MS, Denham J, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol. 2001;19:971–4.

    Article  CAS  PubMed  Google Scholar 

  8. Ludwig TE, Levenstein ME, Jones JM, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006;24:185–7.

    Article  CAS  PubMed  Google Scholar 

  9. Peerani R, Rao BM, Bauwens C, et al. Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J. 2007;26:4744–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9:641–50.

    Article  CAS  PubMed  Google Scholar 

  11. Bianco P. “Mesenchymal” stem cells. Annu Rev Cell Dev Biol. 2014;30:677–704.

    Article  CAS  PubMed  Google Scholar 

  12. Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol. 2012;12:383–96.

    Article  PubMed  Google Scholar 

  13. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.

    Article  CAS  PubMed  Google Scholar 

  14. Kshitiz, Park J, Kim P, et al. Control of stem cell fate and function by engineering physical microenvironments. Integr Biol (Camb). 2012;4:1008–18.

    Article  Google Scholar 

  15. Lv FJ, Tuan RS, Cheung KM, et al. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells. 2014;32:1408–19.

    Article  CAS  PubMed  Google Scholar 

  16. Orkin SH. Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet. 2000;1:57–64.

    Article  CAS  PubMed  Google Scholar 

  17. Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008;132:631–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Challen GA, Boles N, Lin KK, et al. Mouse hematopoietic stem cell identification and analysis. Cytometry A. 2009;75:14–24.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mikkola HK, Orkin SH. The journey of developing hematopoietic stem cells. Development. 2006;133:3733–44.

    Article  CAS  PubMed  Google Scholar 

  20. Polo JM, Anderssen E, Walsh RM, et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell. 2012;151:1617–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Loewer S, Cabili MN, Guttman M, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet. 2010;42:1113–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saxena S, Ronn RE, Guibentif C, et al. Cyclic AMP signaling through Epac axis modulates human hemogenic endothelium and enhances hematopoietic cell generation. Stem Cell Rep. 2016;6:692–703.

    Article  CAS  Google Scholar 

  23. Keller R, Davidson LA, Shook DR. How we are shaped: the biomechanics of gastrulation. Differentiation. 2003;71:171–205.

    Article  PubMed  Google Scholar 

  24. Yeung T, Georges PC, Flanagan LA, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton. 2005;60:24–34.

    Article  PubMed  Google Scholar 

  25. Evans ND, Minelli C, Gentleman E, et al. Substrate stiffness affects early differentiation events in embryonic stem cells. Eur Cell Mater. 2009;18:1–13. discussion 13–4

    Article  CAS  PubMed  Google Scholar 

  26. Chowdhury F, Li Y, Poh YC, et al. Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS One. 2010;5:e15655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310:1139–43.

    Article  CAS  PubMed  Google Scholar 

  28. Li D, Zhou J, Chowdhury F, et al. Role of mechanical factors in fate decisions of stem cells. Regen Med. 2011;6:229–40.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li D, Zhou J, Wang L, et al. Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. J Cell Biol. 2010;191:631–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  CAS  PubMed  Google Scholar 

  31. Engler AJ, Griffin MA, Sen S, et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol. 2004;166:877–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zemel A, Rehfeldt F, Brown AE, et al. Optimal matrix rigidity for stress fiber polarization in stem cells. Nat Phys. 2010;6:468–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tamada M, Sheetz MP, Sawada Y. Activation of a signaling cascade by cytoskeleton stretch. Dev Cell. 2004;7:709–18.

    Article  CAS  PubMed  Google Scholar 

  34. Gilbert PM, Havenstrite KL, Magnusson KE, et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science. 2010;329:1078–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kraehenbuehl TP, Langer R, Ferreira LS. Three-dimensional biomaterials for the study of human pluripotent stem cells. Nat Methods. 2011;8:731–6.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Z, Hu J, Ma PX. Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Adv Drug Deliv Rev. 2012;64:1129–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen S, Shi J, Zhang M, et al. Mesenchymal stem cell-laden anti-inflammatory hydrogel enhances diabetic wound healing. Sci Rep. 2015;5:18104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Holst J, Watson S, Lord MS, et al. Substrate elasticity provides mechanical signals for the expansion of hematopoietic stem and progenitor cells. Nat Biotechnol. 2010;28:1123–8.

    Article  CAS  PubMed  Google Scholar 

  39. Kiel MJ, Yilmaz OH, Iwashita T, et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121:1109–21.

    Article  CAS  PubMed  Google Scholar 

  40. Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425:841–6.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425:836–41.

    Article  CAS  PubMed  Google Scholar 

  42. Lee-Thedieck C, Rauch N, Fiammengo R, et al. Impact of substrate elasticity on human hematopoietic stem and progenitor cell adhesion and motility. J Cell Sci. 2012;125:3765–75.

    Article  CAS  PubMed  Google Scholar 

  43. Chowdhury F, Na S, Li D, et al. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat Mater. 2010;9:82–8.

    Article  CAS  PubMed  Google Scholar 

  44. Poh YC, Chowdhury F, Tanaka TS, et al. Embryonic stem cells do not stiffen on rigid substrates. Biophys J. 2010;99:L19–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kurpinski K, Chu J, Hashi C, et al. Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci U S A. 2006;103:16095–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Adamo L, Naveiras O, Wenzel PL, et al. Biomechanical forces promote embryonic haematopoiesis. Nature. 2009;459:1131–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Heng BC, Vinoth KJ, Liu H, et al. Low temperature tolerance of human embryonic stem cells. Int J Med Sci. 2006;3:124–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stolzing A, Scutt A. Effect of reduced culture temperature on antioxidant defences of mesenchymal stem cells. Free Radic Biol Med. 2006;41:326–38.

    Article  CAS  PubMed  Google Scholar 

  49. Reissis Y, Garcia-Gareta E, Korda M, et al. The effect of temperature on the viability of human mesenchymal stem cells. Stem Cell Res Ther. 2013;4:139.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kippin TE, Martens DJ, van der Kooy D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev. 2005;19:756–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Toworfe GK, Composto RJ, Adams CS, et al. Fibronectin adsorption on surface-activated poly(dimethylsiloxane) and its effect on cellular function. J Biomed Mater Res A. 2004;71:449–61.

    Article  PubMed  Google Scholar 

  52. McBeath R, Pirone DM, Nelson CM, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6:483–95.

    Article  CAS  PubMed  Google Scholar 

  53. Burridge K, Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol. 1996;12:463–518.

    Article  CAS  PubMed  Google Scholar 

  54. Tseng AA, Chen K, Chen CD, et al. Electron beam lithography in nanoscale fabrication: recent development. IEEE Trans Electron. 2003;26:141–9.

    CAS  Google Scholar 

  55. Dalby MJ, Gadegaard N, Tare R, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6:997–1003.

    Article  CAS  PubMed  Google Scholar 

  56. Chadwick K, Wang L, Li L, et al. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood. 2003;102:906–15.

    Article  CAS  PubMed  Google Scholar 

  57. Ng ES, Davis RP, Azzola L, et al. Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood. 2005;106:1601–3.

    Article  CAS  PubMed  Google Scholar 

  58. Watt FM, Huck WT. Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol. 2013;14:467–73.

    Article  CAS  PubMed  Google Scholar 

  59. Avigdor A, Goichberg P, Shivtiel S, et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood. 2004;103:2981–9.

    Article  CAS  PubMed  Google Scholar 

  60. Cao H, Heazlewood SY, Williams B, et al. The role of CD44 in fetal and adult hematopoietic stem cell regulation. Haematologica. 2016;101:26–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014;1840:2506–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lapidot T, Petit I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol. 2002;30:973–81.

    Article  CAS  PubMed  Google Scholar 

  63. Pardanaud L, Dieterlen-Lievre F. Manipulation of the angiopoietic/hemangiopoietic commitment in the avian embryo. Development. 1999;126:617–27.

    CAS  PubMed  Google Scholar 

  64. Brizzi MF, Tarone G, Defilippi P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol. 2012;24:645–51.

    Article  CAS  PubMed  Google Scholar 

  65. Ye K, Cao L, Li S, et al. Interplay of matrix stiffness and cell-cell contact in regulating differentiation of stem cells. ACS Appl Mater Interfaces. 2015;8(34):21903–13.

    Article  PubMed  Google Scholar 

  66. Murray P, Edgar D. The regulation of embryonic stem cell differentiation by leukaemia inhibitory factor (LIF). Differentiation. 2001;68:227–34.

    Article  CAS  PubMed  Google Scholar 

  67. Prosper F, Verfaillie CM. Regulation of hematopoiesis through adhesion receptors. J Leukoc Biol. 2001;69:307–16.

    CAS  PubMed  Google Scholar 

  68. Burdon T, Smith A, Savatier P. Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol. 2002;12:432–8.

    Article  CAS  PubMed  Google Scholar 

  69. Krause DS. Regulation of hematopoietic stem cell fate. Oncogene. 2002;21:3262–9.

    Article  CAS  PubMed  Google Scholar 

  70. Rettig MP, Ansstas G, DiPersio JF. Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4. Leukemia. 2012;26:34–53.

    Article  CAS  PubMed  Google Scholar 

  71. Broudy VC. Stem cell factor and hematopoiesis. Blood. 1997;90:1345–64.

    CAS  PubMed  Google Scholar 

  72. Sahin AO, Buitenhuis M. Molecular mechanisms underlying adhesion and migration of hematopoietic stem cells. Cell Adhes Migr. 2012;6:39–48.

    Article  Google Scholar 

  73. Winkler IG, Barbier V, Nowlan B, et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med. 2012;18:1651–7.

    Article  CAS  PubMed  Google Scholar 

  74. Matsubara A, Iwama A, Yamazaki S, et al. Endomucin, a CD34-like sialomucin, marks hematopoietic stem cells throughout development. J Exp Med. 2005;202:1483–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nielsen JS, McNagny KM. CD34 is a key regulator of hematopoietic stem cell trafficking to bone marrow and mast cell progenitor trafficking in the periphery. Microcirculation. 2009;16:487–96.

    Article  CAS  PubMed  Google Scholar 

  76. Cheng J, Baumhueter S, Cacalano G, et al. Hematopoietic defects in mice lacking the sialomucin CD34. Blood. 1996;87:479–90.

    CAS  PubMed  Google Scholar 

  77. Baumheter S, Singer MS, Henzel W, et al. Binding of L-selectin to the vascular sialomucin CD34. Science. 1993;262:436–8.

    Article  CAS  PubMed  Google Scholar 

  78. Khurana S, Schouteden S, Manesia JK, et al. Outside-in integrin signaling via periostin-integrin-αvβ3 regulates hematopoietic stem cell quiescence. Nat Commun. 2016;7:13500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chaudhry MA, Bowen BD, Piret JM. Culture pH and osmolality influence proliferation and embryoid body yields of murine embryonic stem cells. Biochem Eng J. 2009;45:126–35.

    Article  CAS  Google Scholar 

  80. Teo AL, Mantalaris A, Lim M. Influence of culture pH on proliferation and cardiac differentiation of murine embryonic stem cells. Biochem Eng J. 2014;90:8–15.

    Article  CAS  Google Scholar 

  81. Monfoulet LE, Becquart P, Marchat D, et al. The pH in the microenvironment of human mesenchymal stem cells is a critical factor for optimal osteogenesis in tissue-engineered constructs. Tissue Eng A. 2014;20:1827–40.

    Article  CAS  Google Scholar 

  82. Dahlberg A, Delaney C, Bernstein ID. Ex vivo expansion of human hematopoietic stem and progenitor cells. Blood. 2011;117:6083–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Flores-Guzman P, Fernandez-Sanchez V, Mayani H. Concise review: ex vivo expansion of cord blood-derived hematopoietic stem and progenitor cells: basic principles, experimental approaches, and impact in regenerative medicine. Stem Cells Transl Med. 2013;2:830–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hevehan DL, Papoutsakis ET, Miller WM. Physiologically significant effects of pH and oxygen tension on granulopoiesis. Exp Hematol. 2000;28:267–75.

    Article  CAS  PubMed  Google Scholar 

  85. McAdams TA, Miller WM, Papoutsakis ET. pH is a potent modulator of erythroid differentiation. Br J Haematol. 1998;103:317–25.

    Article  CAS  PubMed  Google Scholar 

  86. Yang H, Miller WM, Papoutsakis ET. Higher pH promotes megakaryocytic maturation and apoptosis. Stem Cells. 2002;20:320–8.

    Article  CAS  PubMed  Google Scholar 

  87. Mendez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466:829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Indian Institute of Science Education Research, Thiruvananthapuram, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Khurana Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Nagananda, N., Ali, A.M., Roy, I.M., Verfaillie, C.M., Khurana, S. (2017). Physico-Chemical Properties of the Stem Cell Niche. In: Mukhopadhyay, A. (eds) Regenerative Medicine: Laboratory to Clinic. Springer, Singapore. https://doi.org/10.1007/978-981-10-3701-6_4

Download citation

Publish with us

Policies and ethics