Age-Related Histological Changes of the Vocal Folds



An intricate relationship produces phonation among the vocal folds, laryngeal muscles, cartilage, and nerves. In addition, mucous secretion from the laryngeal glands is crucial for the pliability of the mucosal wave during phonation. Age-related changes of voice are caused by the simultaneous degeneration of these organs. To understand the mechanisms behind presbyphonia, it is most important to elucidate the associated histological changes. Over the last few decades, many elegant histological studies have been published. In this chapter, we describe our current understanding of the normal histological characteristics in addition to age-related histological changes of the organs associated with voice. This broader understanding may lead to the development of novel treatments for presbyphonia.


Hyaluronic Acid Lamina Propria Neuromuscular Junction Elastic Fiber Superficial Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hirano M. Morphological structure of the vocal cord as a vibrator and its variations. Folia Phoniatr (Basel). 1974;26(2):89–94.CrossRefGoogle Scholar
  2. 2.
    Hammond TH, Gray SD, Butler JE. Age- and gender-related collagen distribution in human vocal folds. Ann Otol Rhinol Laryngol. 2000;109(10 Pt 1):913–20.CrossRefPubMedGoogle Scholar
  3. 3.
    Gray SD, Titze IR, Alipour F, et al. Biomechanical and histologic observations of vocal fold fibrous proteins. Ann Otol Rhinol Laryngol. 2000;109(1):77–85.CrossRefPubMedGoogle Scholar
  4. 4.
    Stiblar-Martincic D. Histology of laryngeal mucosa. Acta Otolaryngol Suppl. 1997;527:138–41.CrossRefPubMedGoogle Scholar
  5. 5.
    Levendoski EE, Leydon C, Thibeault SL. Vocal fold epithelial barrier in health and injury: a research review. J Speech Lang Hear Res. 2014;57(5):1679–91. doi: 10.1044/2014_JSLHR-S-13-0283.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ximenes Filho JA, Tsuji DH, do Nascimento PH, et al. Histologic changes in human vocal folds correlated with aging: a histomorphometric study. Ann Otol Rhinol Laryngol. 2003;112(10):894–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Salwowska NM, Bebenek KA, Zadlo DA et al. Physiochemical properties and application of hyaluronic acid: a systematic review. J Cosmet Dermatol. 2016; doi:  10.1111/jocd.12237.
  8. 8.
    Hammond TH, Zhou R, Hammond EH, et al. The intermediate layer: a morphologic study of the elastin and hyaluronic acid constituents of normal human vocal folds. J Voice. 1997;11(1):59–66. S0892-1997(97)80024-0 [pii].CrossRefPubMedGoogle Scholar
  9. 9.
    Laurent TC, Laurent UB, Fraser JR. Functions of hyaluronan. Ann Rheum Dis. 1995;54(5):429–32.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gray SD, Titze IR, Chan R, et al. Vocal fold proteoglycans and their influence on biomechanics. Laryngoscope. 1999;109(6):845–54.CrossRefPubMedGoogle Scholar
  11. 11.
    Branco A, Rodrigues SA, Fabro AT, et al. Hyaluronic acid behavior in the lamina propria of the larynx with advancing age. Otolaryngol Head Neck Surg. 2014;151(4):652–6. doi: 10.1177/0194599814544673.CrossRefPubMedGoogle Scholar
  12. 12.
    Oh JH, Kim YK, Jung JY, et al. Intrinsic aging- and photoaging-dependent level changes of glycosaminoglycans and their correlation with water content in human skin. J Dermatol Sci. 2011;62(3):192–201. doi: 10.1016/j.jdermsci.2011.02.007.CrossRefPubMedGoogle Scholar
  13. 13.
    Pawlak AS, Hammond T, Hammond E, et al. Immunocytochemical study of proteoglycans in vocal folds. Ann Otol Rhinol Laryngol. 1996;105(1):6–11.CrossRefPubMedGoogle Scholar
  14. 14.
    Moscatello DK, Santra M, Mann DM, et al. Decorin suppresses tumor cell growth by activating the epidermal growth factor receptor. J Clin Invest. 1998;101(2):406–12. doi: 10.1172/JCI846.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vial C, Gutierrez J, Santander C, et al. Decorin interacts with connective tissue growth factor (CTGF)/CCN2 by LRR12 inhibiting its biological activity. J Biol Chem. 2011;286(27):24242–52. doi: 10.1074/jbc.M110.189365.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yamaguchi Y, Mann DM, Ruoslahti E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature. 1990;346(6281):281–4. doi: 10.1038/346281a0.CrossRefPubMedGoogle Scholar
  17. 17.
    Kwan P, Ding J, Tredget EE. MicroRNA 181b regulates decorin production by dermal fibroblasts and may be a potential therapy for hypertrophic scar. PLoS One. 2015;10(4):e0123054. doi: 10.1371/journal.pone.0123054.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kolb M, Margetts PJ, Galt T, et al. Transient transgene expression of decorin in the lung reduces the fibrotic response to bleomycin. Am J Respir Crit Care Med. 2001;163(3 Pt 1):770–7. doi: 10.1164/ajrccm.163.3.2006084.CrossRefPubMedGoogle Scholar
  19. 19.
    Zheng Z, Jian J, Velasco O, et al. Fibromodulin enhances angiogenesis during cutaneous wound healing. Plast Reconstr Surg Glob Open. 2015;2(12):e275. doi: 10.1097/GOX.0000000000000243.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Carrino DA, Calabro A, Darr AB, et al. Age-related differences in human skin proteoglycans. Glycobiology. 2011;21(2):257–68. doi: 10.1093/glycob/cwq162.CrossRefPubMedGoogle Scholar
  21. 21.
    Li Y, Liu Y, Xia W, et al. Age-dependent alterations of decorin glycosaminoglycans in human skin. Sci Rep. 2013;3:2422. doi: 10.1038/srep02422.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dion GR, Jeswani S, Roof S, et al. Functional assessment of the ex vivo vocal folds through biomechanical testing: a review. Mater Sci Eng C Mater Biol Appl. 2016;64:444–53. doi: 10.1016/j.msec.2016.04.018.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chan RW, Fu M, Young L, et al. Relative contributions of collagen and elastin to elasticity of the vocal fold under tension. Ann Biomed Eng. 2007;35(8):1471–83. doi: 10.1007/s10439-007-9314-x.CrossRefPubMedGoogle Scholar
  24. 24.
    Hammond TH, Gray SD, Butler J, et al. Age- and gender-related elastin distribution changes in human vocal folds. Otolaryngol Head Neck Surg. 1998;119(4):314–22.. S0194599898003234 [pii].CrossRefPubMedGoogle Scholar
  25. 25.
    Schwartz E, Fleischmajer R. Association of elastin with oxytalan fibers of the dermis and with extracellular microfibrils of cultured skin fibroblasts. J Histochem Cytochem. 1986;34(8):1063–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Kahane JC. Connective tissue changes in the larynx and their effects on voice. J Voice. 1987;1(1):27–30.CrossRefGoogle Scholar
  27. 27.
    Hirano M, Kurita S, Nakashima T. Growth, development, and aging of human voice folds. In: Bless D, Abbs J, editors. Vocal physiology. San Diego: College Hill Press; 1983. p. 22–43.Google Scholar
  28. 28.
    Sato K, Hirano M. Age-related changes of elastic fibers in the superficial layer of the lamina propria of vocal folds. Ann Otol Rhinol Laryngol. 1997;106(1):44–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Myllyharju J, Kivirikko KI. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 2004;20(1):33–43.. S0168-9525(03)00319-6 [pii].CrossRefPubMedGoogle Scholar
  30. 30.
    Hahn MS, Kobler JB, Zeitels SM, et al. Quantitative and comparative studies of the vocal fold extracellular matrix II: collagen. Ann Otol Rhinol Laryngol. 2006;115(3):225–32.CrossRefPubMedGoogle Scholar
  31. 31.
    Sato K, Hirano M, Nakashima T. Age-related changes of collagenous fibers in the human vocal fold mucosa. Ann Otol Rhinol Laryngol. 2002;111(1):15–20.CrossRefPubMedGoogle Scholar
  32. 32.
    Catten M, Gray SD, Hammond TH, et al. Analysis of cellular location and concentration in vocal fold lamina propria. Otolaryngol Head Neck Surg. 1998;118(5):663–7.. S0194599898001478 [pii].PubMedGoogle Scholar
  33. 33.
    Hirano M, Sato K, Nakashima T. Fibroblasts in geriatric vocal fold mucosa. Acta Otolaryngol. 2000;120(2):336–40.CrossRefPubMedGoogle Scholar
  34. 34.
    Sato K, Hirano M. Age-related changes of the macula flava of the human vocal fold. Ann Otol Rhinol Laryngol. 1995;104(11):839–44.CrossRefPubMedGoogle Scholar
  35. 35.
    Chen X, Thibeault SL. Characteristics of age-related changes in cultured human vocal fold fibroblasts. Laryngoscope. 2008;118(9):1700–4. doi: 10.1097/MLG.0b013e31817aec6c.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Faryniarz DA, Chaponnier C, Gabbiani G, et al. Myofibroblasts in the healing lapine medial collateral ligament: possible mechanisms of contraction. J Orthop Res. 1996;14(2):228–37. doi: 10.1002/jor.1100140210.CrossRefPubMedGoogle Scholar
  37. 37.
    Shi Y, Pieniek M, Fard A, et al. Adventitial remodeling after coronary arterial injury. Circulation. 1996;93(2):340–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Branco A, Bartley SM, King SN, et al. Vocal fold myofibroblast profile of scarring. Laryngoscope. 2016;126(3):E110–7. doi: 10.1002/lary.25581.CrossRefPubMedGoogle Scholar
  39. 39.
    Boseley ME, Hartnick CJ. Development of the human true vocal fold: depth of cell layers and quantifying cell types within the lamina propria. Ann Otol Rhinol Laryngol. 2006;115(10):784–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Subotic R, Vecerina S, Krajina Z, et al. Histological structure of vocal fold lamina propria in foetal larynx. Acta Otolaryngol. 1984;97(5–6):403–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Sato K, Hirano M, Nakashima T. Fine structure of the human newborn and infant vocal fold mucosae. Ann Otol Rhinol Laryngol. 2001;110(5 Pt 1):417–24.CrossRefPubMedGoogle Scholar
  42. 42.
    Ishii K, Yamashita K, Akita M, et al. Age-related development of the arrangement of connective tissue fibers in the lamina propria of the human vocal fold. Ann Otol Rhinol Laryngol. 2000;109(11):1055–64.CrossRefPubMedGoogle Scholar
  43. 43.
    Hartnick CJ, Rehbar R, Prasad V. Development and maturation of the pediatric human vocal fold lamina propria. Laryngoscope. 2005;115(1):4–15.. 00005537-200501000-00003 [pii].CrossRefPubMedGoogle Scholar
  44. 44.
    De Campos D, Ellwanger JH, da Costa Rosa JP, et al. Morphology of fetal vocal fold and associated structures. J Voice. 2013;27(1):5–10. doi: 10.1016/j.jvoice.2012.09.002.CrossRefPubMedGoogle Scholar
  45. 45.
    Nita LM, Battlehner CN, Ferreira MA, et al. The presence of a vocal ligament in fetuses: a histochemical and ultrastructural study. J Anat. 2009;215(6):692–7. doi: 10.1111/j.1469-7580.2009.01146.x.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Nishida N, Taguchi A, Motoyoshi K, et al. Age-related changes in rat intrinsic laryngeal muscles: analysis of muscle fibers, muscle fiber proteins, and subneural apparatuses. Eur Arch Otorhinolaryngol. 2013;270(3):975–84. doi: 10.1007/s00405-012-2231-0.CrossRefPubMedGoogle Scholar
  47. 47.
    Wells L, Edwards KA, Bernstein SI. Myosin heavy chain isoforms regulate muscle function but not myofibril assembly. EMBO J. 1996;15(17):4454–9.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Rodeno MT, Sanchez-Fernandez JM, Rivera-Pomar JM. Histochemical and morphometrical ageing changes in human vocal cord muscles. Acta Otolaryngol. 1993;113(3):445–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Narici MV, Maffulli N. Sarcopenia: characteristics, mechanisms and functional significance. Br Med Bull. 2010;95:139–59. doi: 10.1093/bmb/ldq008.CrossRefPubMedGoogle Scholar
  50. 50.
    Jang YC, Van Remmen H. Age-associated alterations of the neuromuscular junction. Exp Gerontol. 2011;46(2–3):193–8. doi: 10.1016/j.exger.2010.08.029.CrossRefPubMedGoogle Scholar
  51. 51.
    Kersing W, Jennekens FG. Age-related changes in human thyroarytenoid muscles: a histological and histochemical study. Eur Arch Otorhinolaryngol. 2004;261(7):386–92. doi: 10.1007/s00405-003-0702-z.CrossRefPubMedGoogle Scholar
  52. 52.
    Malmgren LT, Fisher PJ, Bookman LM, et al. Age-related changes in muscle fiber types in the human thyroarytenoid muscle: an immunohistochemical and stereological study using confocal laser scanning microscopy. Otolaryngol Head Neck Surg. 1999;121(4):441–51. S0194599899004295 [pii].CrossRefPubMedGoogle Scholar
  53. 53.
    Grimby G. Muscle performance and structure in the elderly as studied cross-sectionally and longitudinally. J Gerontol A Biol Sci Med Sci. 1995;50 Spec No:17–22.PubMedGoogle Scholar
  54. 54.
    Sato T, Tauchi H. Age changes in human vocal muscle. Mech Ageing Dev. 1982;18(1):67–74. 0047-6374(82)90031-8 [pii].CrossRefPubMedGoogle Scholar
  55. 55.
    Martins RH, Benito Pessin AB, Nassib DJ, et al. Aging voice and the laryngeal muscle atrophy. Laryngoscope. 2015;125(11):2518–21. doi: 10.1002/lary.25398.CrossRefPubMedGoogle Scholar
  56. 56.
    Malmgren LT, Jones CE, Bookman LM. Muscle fiber and satellite cell apoptosis in the aging human thyroarytenoid muscle: a stereological study with confocal laser scanning microscopy. Otolaryngol Head Neck Surg. 2001;125(1):34–9. S0194-5998(01)18123-4 [pii].CrossRefPubMedGoogle Scholar
  57. 57.
    Mortelliti AJ, Malmgren LT, Gacek RR. Ultrastructural changes with age in the human superior laryngeal nerve. Arch Otolaryngol Head Neck Surg. 1990;116(9):1062–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Nakai T, Goto N, Moriyama H, et al. The human recurrent laryngeal nerve during the aging process. Okajimas Folia Anat Jpn. 2000;76(6):363–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Tiago R, Pontes P, do Brasil OC. Age-related changes in human laryngeal nerves. Otolaryngol Head Neck Surg. 2007;136(5):747–51.. S0194-5998(06)03584-4 [pii].CrossRefPubMedGoogle Scholar
  60. 60.
    Perie S, St Guily JL, Callard P, et al. Innervation of adult human laryngeal muscle fibers. J Neurol Sci. 1997;149(1):81–6. S0022510X97053951 [pii].CrossRefPubMedGoogle Scholar
  61. 61.
    Gambino DR, Malmgren LT, Gacek RR. Age-related changes in the neuromuscular junctions in the human posterior cricoarytenoid muscles: a quantitative study. Laryngoscope. 1990;100(3):262–8. doi: 10.1288/00005537-199003000-00010.CrossRefPubMedGoogle Scholar
  62. 62.
    Takeda N, Thomas GR, Ludlow CL. Aging effects on motor units in the human thyroarytenoid muscle. Laryngoscope. 2000;110(6):1018–25.. 00005537-200006000-00025 [pii].CrossRefPubMedGoogle Scholar
  63. 63.
    Turk ML, Hogg DA. Age changes in the human laryngeal cartilages. Clin Anat. 1993;6(3):154–62.CrossRefGoogle Scholar
  64. 64.
    Roncallo P. Researches about ossification and conformation of the thyroid cartilage in men. Acta Otolaryngol. 1948;36(2):110–34.CrossRefPubMedGoogle Scholar
  65. 65.
    Harrison DF, Denny S. Ossification within the primate larynx. Acta Otolaryngol. 1983;95(5–6):440–6.CrossRefPubMedGoogle Scholar
  66. 66.
    De la Grandmaison GL, Banasr A, Durigon M. Age estimation using radiographic analysis of laryngeal cartilage. Am J Forensic Med Pathol. 2003;24(1):96–9. doi: 10.1097/01.PAF.0000052756.47528.6D.PubMedGoogle Scholar
  67. 67.
    Bak-Pedersen K, Nielsen KO. Subepithelial mucous glands in the adult human larynx. Studies on number, distribution and density. Acta Otolaryngol. 1986;102(3–4):341–52.CrossRefPubMedGoogle Scholar
  68. 68.
    Gracco C, Kahane JC. Age-related changes in the vestibular folds of the human larynx: a histomorphometric study. J Voice. 1989;3(3):204–12.CrossRefGoogle Scholar
  69. 69.
    Hirano M. Phonosurgery: basic and clinical investigations. Otologia Fukuoka. 1975;21:239–442.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Otolaryngology, Head & Neck Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan

Personalised recommendations