Skip to main content

Hypothalamic-Pituitary-Testicular Axis

  • Chapter
  • First Online:

Abstract

  • Structure of gonadotropin-releasing hormone (GnRH)

  • Structure of GnRH receptor

  • Synthesis and regulation of GnRH receptor

  • GnRH-GnRH receptor interactions

  • GnRH pulses

  • Regulation of GnRH secretion

  • Structure of gonadotropins

  • Regulation of gonadotropin secretion

Male reproduction, development, and maintenance of male sexual characteristics are principally governed by the hypothalamic-pituitary-testicular (HPT) axis. The axis is composed of the hypothalamic gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and the gonadal steroids. GnRH is the central regulator of the male reproductive hormonal cascade. The HPT axis maintains a dynamic equilibrium of serum levels of reproductive hormones through a closed-loop feedback mechanism. A cause leads to an effect and that may be the end of a process. The cause and effect continue to modify each other. The effect may suppress the cause for attenuation of the effect. At other times, the effect may promote the cause for a still larger effect. The former is the negative feedback from the effect to the cause, and the latter is the positive feedback from the effect to the cause. Numerous hypothalamic, pituitary, and testicular factors tightly regulate the HPT axis and ensure its proper functioning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams ML, Sewing B, Forman JB, Meyer ER, Cicero TJ. Opioid-induced suppression of rat testicular function. J Pharmacol Exp Ther. 1993;266:323–8.

    CAS  PubMed  Google Scholar 

  • Adler BA, Crowley WR. Evidence for gamma-aminobutyric acid modulation of ovarian hormonal effects on luteinizing hormone secretion and hypothalamic catecholamine activity in the female rat. Endocrinology. 1986;118:91–7.

    Article  CAS  PubMed  Google Scholar 

  • Barbarino A, Marinis LD, Mancini A. Estradiol modulation of basal and gonadotropin-releasing-hormone-induced gonadotropin release in intact and castrated men. Neuroendocrinology 1983;36:105–11.

    Google Scholar 

  • Belchetz PE, Plant TM, Nakai Y, Keogh EJ, Knobil E. Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotropin-releasing hormone. Science. 1978;202:631–3.

    Article  CAS  PubMed  Google Scholar 

  • Bergen H, Hejtmancik J, Pfaff D. Effects of gamma-aminobutyric acid receptor agonists and antagonist on LHRH-synthesizing neurons as detected by immunocytochemistry and in situ hybridization. Exp Brain Res. 1991;87:46–56.

    Article  CAS  PubMed  Google Scholar 

  • Bousfield GR, Jia L, Ward DN. Gondotropins: Chemistry and Biosynthesis. In: Neill JD, editor. Knobil and Neill’s physiology of reproduction. Amsterdam: Elsevier Academic Pres; 2006. p. 1581–634.

    Chapter  Google Scholar 

  • Braden TD, Bervig T, Conn PM. Protein kinase-C activation stimulates synthesis of gonadotropin-releasing hormone (GnRH) receptors, but does not mediate GnRH-stimulated receptor synthesis. Endocrinology. 1991;129:2486–90.

    Article  CAS  PubMed  Google Scholar 

  • Braden TD, Conn PM. Activin-A stimulates the synthesis of gonadotropin-releasing hormone receptors. Endocrinology. 1992;130:2101–5.

    CAS  PubMed  Google Scholar 

  • Braden TD, Farnworth PG, Burger HG, Conn PM. Regulation of the synthetic rate of gonadotropin-releasing hormone receptors in rat pituitary cell cultures by inhibin. Endocrinology. 1990;127:2387–92.

    Article  CAS  PubMed  Google Scholar 

  • Brann DW. Glutamate: a major excitatory transmitter in neuroendocrine regulation. Neuroendocrinology. 1995;61:213–25.

    Article  CAS  PubMed  Google Scholar 

  • Burr IM, Sizonenko PC, Kaplan SL, Grumbach MM. Hormonal changes in puberty. Pediatr Res. 1970;4:25–35.

    Article  CAS  PubMed  Google Scholar 

  • Cailleux-Bounacer A, Rohmer V, Lahlou N, Lefebvre H, Roger M, Kuhn JM. Impact level of dihydrotestosterone on the hypothalamic-pituitary-Leydig cell axis in men. Int J Androl. 2009;32:57–65.

    Article  CAS  PubMed  Google Scholar 

  • Catt KJ, Pierce JG. Gonadotropic hormones of the adenohypophysis. In: Yen SC, Jaffe RB, editors. Reproductive endocrinology. Philadelphia: Saunders; 1986. p. 75–114.

    Google Scholar 

  • Childs GV. Gonadotropes and Lactotropes. In: Neill JD, editor. Knobil and Neill’s physiology of reproduction. Amsterdam: Elsevier Academic Press; 2006. p. 1483–580.

    Chapter  Google Scholar 

  • Clayton RN, Catt KJ. Gonadotropin releasing hormone receptors: characterization, physiological regulation and relationship to reproductive function. Endocr Rev. 1981;2:186–209.

    Article  CAS  PubMed  Google Scholar 

  • Corrigan AZ, Bilezikjian LM, Carroll RS, Bald LN, Schmelzer CH, Fendly BM, et al. Evidence for an autocrine role of activin B within rat anterior pituitary cultures. Endocrinology. 1991;128:1682–4.

    Article  CAS  PubMed  Google Scholar 

  • Dungan HM, Clifton DK, Steiner RA. Minireview: kisspeptin neurons as central processors in the regulation of gonadotropin-releasing hormone secretion. Endocrinology. 2006;147:1154–8.

    Article  CAS  PubMed  Google Scholar 

  • Ehlers K, Halvorson LM. Gonadotropin-releasing Hormone (GnRH) and the GnRH Receptor (GnRHR). Glob. libr. women’s med. (ISSN: 1756-2228); 2013. doi:10.3843/GLOWM.10285.

  • Emons G, Hoffmann HG, Brack C, Ortmann O, Sturm R, Ball P, et al. Modulation of gonadotropin-releasing hormone receptor concentration in cultured female rat pituitary cells by estradiol treatment. J Steroid Biochem. 1988;31:751–6.

    Article  CAS  PubMed  Google Scholar 

  • Ferin M, Van Vugt D, Wardlaw S. The hypothalamic control of the menstrual cycle and the role of the endogenous opioid peptides. Recent Prog Horm Res. 1984;40:441–85.

    CAS  PubMed  Google Scholar 

  • Gerendai I, Shaha C, Gunsalus GL, Bardin CW. The effects of opioid receptor antagonists suggest that testicular opiates regulate Sertoli and Leydig cell function in the neonatal rat. Endocrinology. 1986;118:2039–44.

    Article  CAS  PubMed  Google Scholar 

  • Hayes FJ, Seminara SB, DeCruz S, Boepple PA, Crowley WF. Aromatase inhibition in the human male reveals a hypothalamic site of estrogen feedback. J Clin Endocrinol Metab. 2000;85:3027–35.

    CAS  PubMed  Google Scholar 

  • Herbison AE, Dyer RG. Effect on luteinizing hormone secretion of GABA receptor modulation in the medial preoptic area at the time of proestrous luteinizing hormone surge. Neuroendocrinology. 1991;53:317–20.

    Article  CAS  PubMed  Google Scholar 

  • Herbison AE. Physiology of the adult gonadotropin-releasing hormone-neuronal network. In: Plant TM, Zeleznik AJ, editors. Knobil and Neill’s physiology of reproduction. 4th ed. London: Academic Pres; 2015. p. 399–468.

    Chapter  Google Scholar 

  • Irwig MS, Fralay GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, et al. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KISS-1 mRNA in the male rat. Neuroendocrinology. 2004;80:264–72.

    Article  CAS  PubMed  Google Scholar 

  • Kaiser UB, Jakubowiak A, Steinberger A, Chin WW. Differential effects of gonadotropin-releasing hormone (GnRH) pulse frequency on gonadotropin subunit and GnRH receptor messenger ribonucleic acid levels in vitro. Endocrinology. 1997;138:1224–31.

    Article  CAS  PubMed  Google Scholar 

  • Kalra SP, Allen LG, Sahu A, Kalra PS, Crowley WR. Gonadal steroids and neuropeptide Y-opioid-LHRH axis: interactions and diversities. J Steroid Biochem. 1988;30:185–93.

    Article  CAS  PubMed  Google Scholar 

  • Karsch FJ, Weick RF, Butler WR, Dierschke DJ, Krey LC, Weiss G, et al. Induced LH surges in the rhesus monkey: strength-duration characteristics of the estrogen stimulus. Endocrinology. 1973;92:1740–7.

    Article  CAS  PubMed  Google Scholar 

  • Katz N. The impact of opioids on the endocrine system. Pain Management. 2005;1:1–6.

    Google Scholar 

  • Krsmanovick LZ, Hu L, Leung PK, Feng H, Catt KJ. The hypothalamic GnRH pulse generator: multiple regulatory mechanisms. Trends Endocrinol Metab. 2009;20:402–8.

    Article  Google Scholar 

  • Kumar A, Dewan R, Suri J, Kohli S, Shekhar S, Dhole B, et al. Abolition of endocrine dimorphism in hyperthyroid males? An argument for the positive feedback effect of hyperestrogenaemia on LH secretion. Andrologia. 2012;44:217–25.

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Mohanty BP, Rani L. Secretion of testicular steroids and gonadotrophins in hypothyroidism. Andrologia. 2007;39:253–60.

    Article  CAS  PubMed  Google Scholar 

  • Kulin HE, Reiter EO. Gonadotropin and testosterone measurements after estrogen administration to adult men, prepubertal and pubertal boys, and men with hypogonadotropism: Evidence for maturation of positive feedback in the male. Pediat. Res. 1976;10:46–51.

    Google Scholar 

  • Lechan RM, Toni R. Functional anatomy of the hypothalamus and pituitary. In: De Groot LJ, editor. Endotext. 2000. South Dartmouth (MA): MDText.com, Inc. www.endotext.org.

    Google Scholar 

  • Li S, Hong M, Fournier A, St-Pierre S, Pelletier G. Role of neuropeptide Y in the regulation of gonadotropin-releasing hormone gene expression in the rat preoptic area. Brain Res Mol Brain Res. 1994;26:69–73.

    Article  CAS  PubMed  Google Scholar 

  • Lo KC, Lamb DJ. The testis and male accessory organs. In: Yen SC, Jaffe RB, editors. Reproductive endocrinology. Philadelphia: Saunders; 2004. p. 367–88.

    Google Scholar 

  • Low MJ. Neuroendocrinology. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, editors. Williams Textbook of Endocrinology. 12th ed. Philadelphia: Saunders; 2011. p. 103–74.

    Chapter  Google Scholar 

  • Manjithaya RR, Dighe RR. Regulation of gonadotropins synthesis. PNAS Acad. 2006;72:1–12.

    CAS  Google Scholar 

  • Mason AJ, Hayflick JS, Esch F, Ueno H, Ying SY, Guillemin R, et al. Complementary DNA sequences of ovarian follicular fluid inhibin show precursor structure and homology with transforming growth factor 3. Nature (Lond). 1985;318:659–63.

    Article  CAS  Google Scholar 

  • Millar RP, Lu Z, Pawson AJ, Flanagan CA, Morgan K, Maudsley SR. Gonadotropin-releasing hormone receptors. Endocr Rev. 2004;25:235–75.

    Article  CAS  PubMed  Google Scholar 

  • Milton RC, Wormald PJ, Brandt W, Millar RP. The delineation of a decapeptide gonadotropin-releasing sequence in the carboxyl-terminal extension of the human gonadotropin-releasing hormone precursor. JBC. 1986;261:16990–7.

    CAS  Google Scholar 

  • Nakai Y, Plant TM, Hess DL, Keogh EJ, Knobil E. On the sites of the negative and positive feedback actions of estradiol in the control of gonadotropin secretion in the rhesus monkey. Endocrinology. 1978;102:1008–14.

    Article  CAS  PubMed  Google Scholar 

  • Neill JD. GnRH and GnRH receptor genes in the human genome. Endocrinology. 2002;143:737–43.

    Article  CAS  PubMed  Google Scholar 

  • Nikolics K, Mason AJ, Szönyi E, Ramachandran J, Seeburg PH. A prolactin-inhibiting factor within the precursor for human gonadotropin-releasing hormone. Nature. 1985;316:511–7.

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka S, Nishizaki T, Tasaka K, Miyake A, Tanizawa O, Yamatodani A, et al. Estrogen stimulates gonadotropin-releasing hormone release from rat hypothalamus independently through catecholamine and histamine in vitro. Acta Endocrinol. 1989;120:644–8.

    CAS  PubMed  Google Scholar 

  • Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Am Physiol Rev. 2012;92:1235–316.

    Article  CAS  Google Scholar 

  • Quiñones-Jenab V, Jenab S, Ogawa S, Funabashi T, Weesner GD, Pfaff DW. Estrogen regulation of gonadotropin-releasing hormone receptor messenger RNA in female rat pituitary tissue. Brain Res Mol Brain Res. 1996;38:243–50.

    Article  PubMed  Google Scholar 

  • Rance NE, Young 3rd WS, McMullen NT. Topography of neurons expressing luteinizing hormone-releasing hormone gene transcripts in the human hypothalamus and basal forebrain. J Comp Neurol. 1994;339:573–86.

    Article  CAS  PubMed  Google Scholar 

  • Segovia S, del Cerro MC, Ortega E, Pérez-Laso C, Rodriguez-Zafra C, Izquierdo MA, et al. Role of GABAA receptors in the organization of brain and behavioural sex differences. Neuroreport. 1996;7:2553–7.

    Article  CAS  PubMed  Google Scholar 

  • Sheckter CB, Matsumoto AM, Bremmer WJ. Testosterone administration inhibits gonadotropin secretion by an effect directly on the human pituitary. J Clin Endocrinol Metab. 1989;68:397–401.

    Article  CAS  PubMed  Google Scholar 

  • Smith JT, Dungan HM, Stoll EA, Gottsch ML, Braun RE, Eacker SM, et al. Differential regulation of KISS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology. 2005;146:3686–92.

    Article  CAS  PubMed  Google Scholar 

  • Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA. Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci. 2006;26:6687–94.

    Article  CAS  PubMed  Google Scholar 

  • Soghomonian JJ, Martin DL. Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci. 1998;19:500–5.

    Article  CAS  PubMed  Google Scholar 

  • Stanton PG, Burgon PG, Hearn MTW, Robertson DM. Structural and functional characteristics of hFSH and hLH isoforms. Mol Cell Endocrinol. 1996;125:133–41.

    Article  CAS  PubMed  Google Scholar 

  • Tilbrook AJ, de Kretser DM, Clarke IJ. Human recombinant inhibin A suppresses plasma follicle stimulating hormone to intact levels but has no effect on luteinizing hormone in castrated rams. Biol Reprod. 1993;49:779–88.

    Article  CAS  PubMed  Google Scholar 

  • Urban RJ, Padmanabhan V, Beitins I, Veldhuis JD. Metabolic clearance of human follicle-stimulating hormone assessed by radioimmunoassay, immunoradiometric assay, and in vitro Sertoli cell bioassay. J Clin Endocrinol Metab. 1991;73:818–23.

    Article  CAS  PubMed  Google Scholar 

  • Veldhuis JD, Rogol AD, Samojlik E, Ertel NH. Role of endogenous opiates in the expression of negative feedback actions of androgen and estrogen on pulsatile properties of luteinizing hormone secretion in man. J Clin Invest. 1984;74:47–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JC, Sealfon SC, Miller WL. Gonadal hormones and gonadotropin-releasing hormone (GnRH) alter messenger ribonucleic acid levels for GnRH receptors in sheep. Endocrinology. 1994;134:1846–50.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Chang YH, Feldman AN, Ma W, Lahjouji F, Barker JL, et al. The expression of GABA(A) receptor alpha2 subunit is upregulated by testosterone in rat cerebral cortex. Neurosci Lett. 1999;265:25–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Kumar MD, FAMS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Dhole, B., Kumar, A. (2017). Hypothalamic-Pituitary-Testicular Axis. In: Kumar, A., Sharma, M. (eds) Basics of Human Andrology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3695-8_9

Download citation

Publish with us

Policies and ethics