Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

  • 495 Accesses

Abstract

Hydrogen, a kind of clean energy, offers a large amount of heat through combustion without any output of harmful gaseous pollutants or greenhouse gases. Therefore, hydrogen is thought to be very important for the energy industry in the near future. However, due to its inflammability and very low density, the transportation and storage of hydrogen are very important and need to be dealt with; these aspects have significantly limited the application of hydrogen energy. In order to settle these issues, convenient and safe ways of obtaining hydrogen have greatly attracted the interest of researchers. Currently, catalytic methods seem to be the most commonly-used way to produce hydrogen, which is still faced with many challenges. These methods often cost a lot, because noble metals are generally applied as catalyst content. Hence, poisoning and sintering problems are the issues that are hard to solve. Moreover, catalytic reforming systems often demand large spaces and a complex thermal control system. As another advanced technology, non-thermal plasma methods could be a promising candidate due to their non-equilibrium characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang DW. Design and application of miniaturized nonthermal arc plasma for hydrogen generation from ethanol reforming. Sun Yat-Sen University; 2014.

    Google Scholar 

  2. Mohanty P, Patel M, Pant KK. Hydrogen production from steam reforming of acetic acid over Cu–Zn supported calcium aluminate. Bioresour Technol. 2012;123(3):558–65.

    Article  Google Scholar 

  3. Alberico E, Sponholz P, Cordes C, Nielsen M, Drexler HJ, Baumann W, Junge H, Beller M. Selective hydrogen production from methanol with a defined iron pincer catalyst under mild conditions. Angew Chem Int Edit. 2013;52(52):14162–6.

    Article  Google Scholar 

  4. Mori D, Hirose K. Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int J Hydrogen Energy. 2009;34(10):4569–74.

    Article  Google Scholar 

  5. Brown LF. A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. Int J Hydrogen Energy. 2001;26(4):381–97.

    Article  MathSciNet  Google Scholar 

  6. Huber GW, Shabaker JW, Dumesic JA. Raney Ni–Sn catalyst for H2 production from biomass-derived hydrocarbons. Cheminform. 2003;300(5628):2075–7.

    Google Scholar 

  7. Kugai J, Subramani V, Song CS, Engelhard MH, Chin YH. Effects of nanocrystalline CeO2 supports on the properties and performance of Ni–Rh bimetallic catalyst for oxidative steam reforming of ethanol. J Catal. 2006;238(2):430–40.

    Article  Google Scholar 

  8. Velu S, Suzuki K, Vijayaraj M, Barman S, Gopinath CS. In situ XPS investigations of Cu1–xNixZnAl-mixed metal oxide catalysts used in the oxidative steam reforming of bio-ethanol. Appl Catal B Environ. 2005;55(4):287–99.

    Article  Google Scholar 

  9. Song LJ, Li XH, Zheng TL. Onboard hydrogen production from partial oxidation of dimethyl ether by spark discharge plasma reforming. Int J Hydrogen Energy. 2008;33(19):5060–5.

    Article  Google Scholar 

  10. Desmet T, Morent R, De Geyter N, Leys C, Schacht E, Dubruel P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review. Biomacromolecules. 2009;10(9):2351–78.

    Article  Google Scholar 

  11. Li XD, Zhang H, Yan SX, Yan JH, Du CM. Hydrogen production from partial oxidation of methane using an AC rotating gliding arc reactor. IEEE Trans Plasma Sci. 2013;41(1):126–32.

    Article  Google Scholar 

  12. Pornmai K, Jindanin A, Sekiguchi H, Chavadej S. Synthesis gas production from CO2–containing natural gas by combined steam reforming and partial oxidation in an AC gliding arc discharge. Plasma Chem Plasma Process. 2012;32(4):723–42.

    Google Scholar 

  13. Li DH, Li X, Bai MG, Tao XM, Shang SY, Dai XY, Yin YX. CO2 reforming of CH4 by atmospheric pressure glow discharge plasma: a high conversion ability. Int J Hydrogen Energy. 2009;34(1):308–13.

    Article  Google Scholar 

  14. Aleknaviciute I, Karayiannis TG, Collins MW, Xanthos C. Methane decomposition under a corona discharge to generate COx-free hydrogen. Energy. 2013;59:432–9.

    Article  Google Scholar 

  15. Martini LM, Dilecce G, Guella G, Maranzana A, Tonachini G, Tosi P. Oxidation of CH4 by CO2 in a dielectric barrier discharge. Chem Phys Lett. 2014;593(2):55–60.

    Article  Google Scholar 

  16. Kim TS, Song S, Chun KM, Lee SH. An experimental study of syn-gas production via microwave plasma reforming of methane, iso-octane and gasoline. Energy. 2010;35(6):2734–43.

    Article  Google Scholar 

  17. Tu X, Whitehead JC. Plasma–catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: Understanding the synergistic effect at low temperature. Appl Catal B Environ. 2012;125(33):439–48.

    Article  Google Scholar 

  18. Pham MH, Goujard V, Tatibouet JM, Batiot-Dupeyrat C. Activation of methane and carbon dioxide in a dielectric-barrier discharge-plasma reactor to produce hydrocarbons—influence of La2O3/gamma-Al2O3 catalyst. Catal Today. 2011;171(1):67–71.

    Article  Google Scholar 

  19. Long HL, Shang SY, Tao XM, Yin YP, Dai XY. CO2 reforming of CH4 by combination of cold plasma jet and Ni/gamma-Al2O3 catalyst. Int J Hydrogen Energy. 2008;33(20):5510–5.

    Article  Google Scholar 

  20. Wang WJ, Wang YQ. Dry reforming of ethanol for hydrogen production: thermodynamic investigation. Int J Hydrogen Energy. 2009;34(13):5382–9.

    Article  Google Scholar 

  21. Sun SH, Yan W, Sun PQ, Chen JW. Thermodynamic analysis of ethanol reforming for hydrogen production. Energy. 2012;44(1):911–24.

    Article  Google Scholar 

  22. Jankhah S, Abatzoglou N, Gitzhofer F. Thermal and catalytic dry reforming and cracking of ethanol for hydrogen and carbon nanofilaments’ production. Int J Hydrogen Energy. 2008;33(18):4769–79.

    Article  Google Scholar 

  23. De Oliveira-Vigier K, Abatzoglou N, Gitzhofer F. Dry-reforming of ethanol in the presence of a 316 stainless steel catalyst. Can J Chem Eng. 2005;83(6):978–84.

    Article  Google Scholar 

  24. da Silva AM, de Souza KR, Jacobs G, Graham UM, Davis BH, Mattos LV, Noronha FB. Steam and CO2 reforming of ethanol over Rh/CeO2 catalyst. Appl Catal B Environ. 2011;102(1–2):94–109.

    Article  Google Scholar 

  25. Mattos LV, Noronha FB. Partial oxidation of ethanol on supported Pt catalysts. J Power Sources. 2005;145(1):10–5.

    Article  Google Scholar 

  26. Mattos LV, Noronha FB. Hydrogen production for fuel cell applications by ethanol partial oxidation on Pt/CeO2 catalysts: the effect of the reaction conditions and reaction mechanism. J Catal. 2005;233(2):453–63.

    Article  Google Scholar 

  27. Klouz V, Fierro V, Denton P, Katz H, Lisse JP, Bouvot-Mauduit S, Mirodatos C. Ethanol reforming for hydrogen production in a hybrid electric vehicle: process optimisation. J Power Sources. 2002;105(1):26–34.

    Article  Google Scholar 

  28. Lopez E, Divins NJ, Anzola A, Schbib S, Borio D, Llorca J. Ethanol steam reforming for hydrogen generation over structured catalysts. Int J Hydrogen Energy. 2013;38(11):4418–28.

    Article  Google Scholar 

  29. Han SJ, Bang Y, Yoo J, Kang KH, Song JH, Seo JG, Song IK. Hydrogen production by steam reforming of ethanol over mesoporous Ni–Al2O3–ZrO2 aerogel catalyst. Int J Hydrogen Energy. 2013;38(35):15119–27.

    Article  Google Scholar 

  30. Nichele V, Signoretto M, Pinna F, Menegazzo F, Rossetti I, Cruciani G, Cerrato G, Di Michele A. Ni/ZrO2 catalysts in ethanol steam reforming: inhibition of coke formation by CaO-doping. Appl Catal B Environ. 2014;150–151(1641):12–20.

    Article  Google Scholar 

  31. Huang LH, Liu Q, Chen RR, Hsu AT. Hydrogen production via auto-thermal reforming of bio-ethanol: The role of iron in layered double hydroxide-derived Ni0.35Mg2.65AlO4.5±δ catalysts. Appl Catal A Gen. 2011;393(1–2):302–8.

    Google Scholar 

  32. Cavallaro S, Freni S. Ethanol steam reforming in a molten carbonate fuel cell. A preliminary kinetic investigation. Int J Hydrogen Energy. 1996;21(6):465–9.

    Article  Google Scholar 

  33. Tsyganov D, Bundaleska N, Tatarova E, Ferreira CM. Ethanol reforming into hydrogen-rich gas applying microwave ‘tornado’-type plasma. Int J Hydrogen Energy. 2013;38(34):14512–30.

    Article  Google Scholar 

  34. Yi Z, Zhongli P, Ruihong Z. Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng. 2009;2(3):51–68.

    Google Scholar 

  35. Ni M, Leung DYC, Leung MKH. A review on reforming bio-ethanol for hydrogen production. Int J Hydrogen Energy. 2007;32(15):3238–47.

    Article  Google Scholar 

  36. Rossetti I, Lasso J, Finocchio E, Ramis G, Nichele V, Signoretto M, Di Michele A. TiO2-supported catalysts for the steam reforming of ethanol. Appl Catal A Gen. 2014;477(42–53):42–53.

    Article  Google Scholar 

  37. Gallagher MJ, Geiger R, Polevich A, Rabinovich A, Gutsol A, Fridman A. On-board plasma-assisted conversion of heavy hydrocarbons into synthesis gas. Fuel. 2010;89(6):1187–92.

    Article  Google Scholar 

  38. Fatsikostas AN, Verykios XE. Reaction network of steam reforming of ethanol over Ni-based catalysts. J Catal. 2004;225(2):439–52.

    Article  Google Scholar 

  39. Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA. High efficiency steam reforming of ethanol by cobalt-based catalysts. J Power Sources. 2004;134(1):27–32.

    Article  Google Scholar 

  40. Huang LH, Xie J, Chen RR, Chu D, Chu W, Hsu AT. Effect of iron on durability of nickel-based catalysts in auto-thermal reforming of ethanol for hydrogen production. Int J Hydrogen Energ. 2008;33(24):7448–56.

    Article  Google Scholar 

  41. Vizcaino AJ, Carriero A, Calles JA. Hydrogen production by ethanol steam reforming over Cu–Ni supported catalysts. Int J Hydrogen Energy. 2007;32(10–11):1450–61.

    Article  Google Scholar 

  42. Li X, Tao XM, Yin YX. An atmospheric-pressure glow-discharge plasma jet and its application. IEEE Trans Plasma Sci. 2009;37(6):759–63.

    Article  Google Scholar 

  43. Yang Y, Shi JJ, Harry JE, Proctor J, Garner CP, Kong MG. Multilayer plasma patterns in paralleled and coupled atmospheric glow discharges. IEEE Trans Plasma Sci. 2005;33(2):298–9.

    Article  Google Scholar 

  44. Yan ZC, Chen L, Wang HL. Hydrogen generation by glow discharge plasma electrolysis of ethanol solutions. J Phys D Appl Phys. 2008;41(15):1525–8.

    Google Scholar 

  45. Desmet T, Morent R, De Geyter N, Leys C, Schacht E, Dubruel P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review. Biomacromolecules. 2009;10(9):2351–78.

    Article  Google Scholar 

  46. Hoang TQ, Zhu XL, Lobban LL, Mallinson RG. Effects of gap and elevated pressure on ethanol reforming in a non-thermal plasma reactor. J Phys D Appl Phys. 2011;44(27):8295–300.

    Article  Google Scholar 

  47. Jimenez M, Rincon R, Marinas A, Calzada MD. Hydrogen production from ethanol decomposition by a microwave plasma: influence of the plasma gas flow. Int J Hydrogen Energy. 2013;38(21):8708–19.

    Article  Google Scholar 

  48. Tatarova E, Bundaleska N, Dias FM, Tsyganov D, Saavedra R, Ferreira CM. Hydrogen production from alcohol reforming in a microwave ‘tornado’-type plasma. Plasma Sources Sci Technol. 2013;22(6):65001–9.

    Article  Google Scholar 

  49. Yu L, Li XD, Tu X, Wang Y, Lu SY, Yan JH. Decomposition of naphthalene by dc gliding arc gas gischarge. J Phys Chem A. 2010;114(1):360–8.

    Article  Google Scholar 

  50. Du CM, Yan JH, Cheron B. Decomposition of toluene in a gliding arc discharge plasma reactor. Plasma Sources Sci Technol. 2007;16(4):791–7.

    Article  Google Scholar 

  51. Kusano Y, Norrman K, Drews J, Leipold F, Singh SV, Morgen P, Bardenshtein A, Krebs N. Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation. Surf Coat Technol. 2011;205(2):S490–4.

    Article  Google Scholar 

  52. Kusano Y, Teodoru S, Leipold F, Andersen TL, Sorensen BF, Rozlosnik N, Michelsen PK. Gliding arc discharge—application for adhesion improvement of fibre reinforced polyester composites. Surf Coat Technol. 2008;202(22–23):5579–82.

    Article  Google Scholar 

  53. Wang BW, Sun QM, Lu YJ, Yang ML, Yan WJ. Steam reforming of dimethyl ether by gliding arc gas discharge plasma for hydrogen production. Chin J Chem Eng. 2014;22(1):104–12.

    Article  Google Scholar 

  54. Bo Z, Yan JH, Li XD, Chi Y, Cen KF. Plasma assisted dry methane reforming using gliding arc gas discharge: effect of feed gases proportion. Int J Hydrogen Energy. 2008;33(20):5545–53.

    Article  Google Scholar 

  55. Yang YC, Lee BJ, Chun YN. Characteristics of methane reforming using gliding arc reactor. Energy. 2009;34(34):172–7.

    Article  Google Scholar 

  56. Sreethawong T, Thakonpatthanakun P, Chavadej S. Partial oxidation of methane with air for synthesis gas production in a multistage gliding arc discharge system. Int J Hydrogen Energy. 2007;32(8):1067–79.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianHua Yan .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Zhejiang University Press, Hangzhou and Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yan, J., Du, C. (2017). Plasma for Ethanol Reforming. In: Hydrogen Generation from Ethanol using Plasma Reforming Technology. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3659-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3659-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3658-3

  • Online ISBN: 978-981-10-3659-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics