Skip to main content

Nano-therapeutic Approaches for Targeting Cancer Stem Cells

  • Chapter
  • First Online:
Particulate Technology for Delivery of Therapeutics
  • 745 Accesses

Abstract

Emerging evidences suggest that a small population of highly tumorigenic cancer stem-like cells (CSC) or tumor-initiating cells (TICs) is responsible for sustaining multiple types of tumor. Like normal stem cells, CSCs can self-renew and differentiate to other tumor cell types and give rise to non-tumorigenic daughter cells that constitute the tumor bulk. These cells are highly resistant to chemo- and radiotherapies causing drug resistance, tumor recurrence, and the formation of distant metastases. CSCs often overexpress drug efflux transporters, and consequently, CSCs can escape conventional chemotherapies. Therefore, CSCs offer an attractive target for therapeutic intervention. Nanocarrier-based therapeutics is being targeted to CSCs for elimination and prevention of recurrence and metastasis of tumors in addition to achieving prolonged blood circulation times, stability, and bioavailability over current therapies. In this chapter, we focus on the problems in delivering drugs to the CSCs, and current status of CSCs therapy including inhibition of drug efflux transporters, targeting tumor microenvironment and nanometric drug delivery approaches to prevent tumor recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso MJ (2004) Nanomedicines for overcoming biological barriers. Biomed Pharmacother 58:168–172

    Article  PubMed  CAS  Google Scholar 

  • Bagalkot V, Farokhzad OC, Langer R et al (2006) An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed 45:8149–8152

    Article  CAS  Google Scholar 

  • Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  CAS  PubMed  Google Scholar 

  • Beck B, Blanpain C (2013) Unravelling cancer stem cell potential. Nat Rev Cancer 13:727–738

    Article  CAS  PubMed  Google Scholar 

  • Beck B, Driessens G, Goossens S et al (2011) A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumors. Nature 478:399–403

    Article  CAS  PubMed  Google Scholar 

  • Bertolini G, Roz L, Perego P et al (2009) Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci USA 106:16281–16286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhowmik A, Khan R, Ghosh MK (2015) Blood brain barrier: a challenge for effectual therapy of brain tumors. Biomed Res Int 2015:320941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blanpain C, Mohrin M, Sotiropoulou PA et al (2011) DNA-damage response in tissue-specific and cancer stem cells. Cell Stem Cell 8:16–29

    Article  CAS  PubMed  Google Scholar 

  • Borovski T, De Sousa EMF, Vermeulen L et al (2011) Cancer stem cell niche: the place to be. Cancer Res 71:634–639

    Article  CAS  PubMed  Google Scholar 

  • Brescia P, Ortensi B, Fornasari L et al (2013) CD133 is essential for glioblastoma stem cell maintenance. Stem Cells 31:857–869

    Article  CAS  PubMed  Google Scholar 

  • Bu Y, Cao D (2012) The origin of cancer stem cells. Front Biosci Sch Ed 4:819–830

    Google Scholar 

  • Calabrese C, Poppleton H, Kocak M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    Article  CAS  PubMed  Google Scholar 

  • Chen ZG (2010) Small-molecule delivery by nanoparticles for anticancer therapy. Trends Mol Med 16:594–602

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Huang YH, Chen JL (2013) Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 34:732–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colak S, Zimberlin CD, Fessler E et al (2014) Decreased mitochondrial priming determines chemoresistance of colon cancer stem cells. Cell Death Differ 21:1170–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782

    Article  CAS  PubMed  Google Scholar 

  • Dean M, Fojo T, Bates S (2005) Tumor stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  CAS  PubMed  Google Scholar 

  • Di Franco S, Todaro M, Dieli F et al (2014) Colorectal cancer defeating? Challenge accepted! Mol Aspects Med 39:61–81

    Article  PubMed  Google Scholar 

  • Diehn M, Cho RW, Lobo NA et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher JI, Haber M, Henderson MJ et al (2010) ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 10:147–156

    Article  CAS  PubMed  Google Scholar 

  • Frank NY, Pendse SS, Lapchak PH et al (2003) Regulation of progenitor cell fusion by ABCB5 P-glycoprotein, a novel human ATP-binding cassette transporter. J Biol Chem 278:47156–47165

    Article  CAS  PubMed  Google Scholar 

  • Frank NY, Margaryan A, Huang Y et al (2005) ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 65:4320–4333

    Article  CAS  PubMed  Google Scholar 

  • Ganesh S, Iyer AK, Morrissey DV et al (2013) Hyaluronic acid based self assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials 34:3489–3502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamblin GD, Carneiro KMM, Fakhoury JF et al (2012) Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability. J Am Chem Soc 134:2888–2891

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322

    Article  CAS  PubMed  Google Scholar 

  • Haraguchi N, Ishii H, Mimori K et al (2010) CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest 120:3326–3339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendricks BK, Cohen-Gadol AA, Miller JC (2015) Novel delivery methods bypassing the blood–brain and blood-tumor barriers. Neurosurg Focus 38:E10

    Article  PubMed  Google Scholar 

  • Hogge DE, Feuring-Buske M, Gerhard B et al (2004) The efficacy of diphtheria-growth factor fusion proteins is enhanced by co-administration of cytosine arabinoside in an immunodeficient mouse model of human acute myeloid leukemia. Leuk Res 28:1221–1226

    Article  CAS  PubMed  Google Scholar 

  • Holohan C, Van Schaeybroeck S, Longley DB et al (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Fu L (2012) Targeting cancer stem cells: a new therapy to cure cancer patients. Am J Cancer Res 2:340–356

    PubMed  PubMed Central  Google Scholar 

  • Hu T, Liu S, Breiter DR et al (2008) Octamer 4 small interfering RNA results in cancer stem cell-like cell apoptosis. Cancer Res 68:6533–6540

    Article  CAS  PubMed  Google Scholar 

  • Huang YF, Shangguan D, Liu H, Phillips JA, Zhang X, Chen Y et al (2009) Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells. ChemBioChem 10:862–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbell JA, Chilkoti A (2012) Nanomaterials for drug delivery. Science 337:303–305

    Article  PubMed  Google Scholar 

  • Ischenko I, Seeliger H, Schaffer M et al (2008) Cancer stem cells: how can we target them? Curr Med Chem 15:3171–3184

    Article  CAS  PubMed  Google Scholar 

  • Jain RK (1994) Barriers to drug delivery in solid tumors. Sci Am 271:58–65

    Article  CAS  PubMed  Google Scholar 

  • Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7:653–664

    Google Scholar 

  • Jin L, Hope KJ, Zhai Q et al (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174

    Article  PubMed  CAS  Google Scholar 

  • Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108:153–164

    Article  CAS  PubMed  Google Scholar 

  • Jordan CT, Upchurch D, Szilvassy SJ et al (2000) The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14:1777–1784

    Article  CAS  PubMed  Google Scholar 

  • Juillerat-Jeanneret L (2008) The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today 13:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Kaluzova M, Bouras A, Machaidze R et al (2015) Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab conjugated iron-oxide nanoparticles. Oncotarget 6:8788–8806

    Article  PubMed  PubMed Central  Google Scholar 

  • Ke XY, Ng VWL, Gao SJ et al (2014) Co-delivery of thioridazine and doxorubicin using polymeric micelles for targeting both cancer cells and cancer stem cells. Biomaterials 35:1096–1108

    Article  CAS  PubMed  Google Scholar 

  • Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550

    Article  CAS  PubMed  Google Scholar 

  • Kim SS, Garg H, Joshi A et al (2009) Strategies for targeted nonviral delivery of siRNAs in vivo. Trends Mol Med 15:491–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SS, Rait A, Rubab F et al (2014a) The clinical potential of targeted nanomedicine: delivering to cancer stem-like cells. Mol Ther 22:278–291

    Article  CAS  PubMed  Google Scholar 

  • Kim SS, Rait A, Kim E et al (2014b) A nanoparticle carrying the p53gene targets tumors including cancer stem cells, sensitizes glioblastomato chemotherapy and improves survival. ACS Nano 8:5494–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S-S, Harford JB, Pirollo KF et al (2015a) Effective treatment of glioblastoma requires crossing the blood–brain barrier and targeting tumors including cancer stem cells: the promise of nanomedicine. Biochem Biophys Res Commun 468:485–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SS, Rait A, Kim E et al (2015b) A tumor-targeting p53 nanodelivery system limits chemoresistance to temozolomide prolonging survival in a mouse model of glioblastoma multiforme. Nanomedicine 11:301–311

    Article  CAS  PubMed  Google Scholar 

  • Kioi M, Vogel H, Schultz G et al (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120:694–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kise K, Kinugasa-Katayama Y, Takakura N (2015) Tumor microenvironment for cancer stem cells. Adv Drug Deliv Rev 99:197–205

    Article  PubMed  CAS  Google Scholar 

  • Kolonko EM, Kiessling LL (2008) A polymeric domain that promotes cellular internalization. J Am Chem Soc 130:5626–5627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang J, Lan X, Liu Y et al (2015) Targeting cancer stem cells with an(131)I-labeled anti-AC133 monoclonal antibody in human colorectal cancer xenografts. Nucl Med Biol 42:505–512

    Article  CAS  PubMed  Google Scholar 

  • Li Y, He H, Jia X et al (2012) A dual-targeting nanocarriers based on poly(amidoamine) dendrimers conjugated with transferring and tamoxifen for treating brain gliomas. Biomaterials 33:3899–3908

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Zhao G, Liu J et al (2009) Novel biodegradable lipid nano complex for siRNA delivery significantly improving the chemosensitivity of human colon cancer stem cells to paclitaxel. J Control Release 140:277–283

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Kelnar K, Liu B et al (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17:211–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YP, Yang CJ, Huang MS et al (2013a) Cisplatin selects for multidrug-resistant CD133+ cells in lung adenocarcinoma by activating Notch signaling. Cancer Res 73:406–416

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Li RT, Qian HQ et al (2013b) Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases stimuli nanoparticles. Biomaterials 34:7191–7203

    Article  CAS  PubMed  Google Scholar 

  • Livney YD, Assaraf YG (2013) Rationally designed nanovehicles to overcome cancer chemoresistance. Adv Drug Deliv Rev 65:1716–1730

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Tang KH, Chan YP et al (2010) miR-130b Promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell 7:694–707

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Holt D, Kundu N et al (2013) A prostaglandin E (PGE) receptor EP4 antagonist protects natural killer cells from PGE(2)-mediated immunosup- pression and inhibits breast cancer metastasis. Oncoimmunol 2:e22647

    Article  Google Scholar 

  • Mammen M, Choi SK, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37:2754–2794

    Article  Google Scholar 

  • Mannino M, Chalmers AJ (2011) Radioresistance of glioma stem cells: intrinsic characteristic or property of the ‘microenvironment-stem cell unit’? Mol Oncol 5:374–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markman JL, Rekechenetskiy A, Holler E et al (2013) Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 65:1866–1879

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  • Medema JP (2013) Cancer stem cells: the challenges ahead. Nat Cell Biol 15:338–344

    Article  CAS  PubMed  Google Scholar 

  • Minderman H, O’loughlin KL, Pendyala L et al (2004) VX-710 (biricodar) increases drug retention and enhances chemosensitivity in resistant cells overexpressing P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Clin Cancer Res 10:1826–1834

    Article  CAS  PubMed  Google Scholar 

  • Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7:150–161

    Article  CAS  PubMed  Google Scholar 

  • Motz GT, Santoro SP, Wang LP et al (2014) Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med 20:607–615

    Google Scholar 

  • Muthiah M, Park IK, Cho CS (2013) Nanoparticle-mediated delivery of therapeutic genes: focus on miRNA therapeutics. Expert Opin Drug Deliv 10:1259–1273

    Article  CAS  PubMed  Google Scholar 

  • Narita Y (2013) Drug review: safety and efficacy of bevacizumab for glioblastoma and other brain tumors. Jpn J Clin Oncol 43:587–595

    Article  PubMed  Google Scholar 

  • Naujokat C (2014) Monoclonal antibodies against human cancer stem cells. Immunotherapy 6:290–308

    Article  CAS  PubMed  Google Scholar 

  • Nobili S, Landini I, Giglioni B et al (2006) Pharmacological strategies for overcoming multidrug resistance. Curr Drug Targets 7:861–879

    Article  CAS  PubMed  Google Scholar 

  • O’Flaherty JD, Barr M, Fennell D et al (2012) The cancer stem-cell hypothesis: its emerging role in lung cancer biology and its relevance for future therapy. J Thorac Oncol 7:1880–1890

    Article  PubMed  CAS  Google Scholar 

  • O’Hare T, Corbin AS, Druker BJ (2006) Targeted CML therapy: controlling drug resistance, seeking cure. Curr Opin Genet Dev 16:92–99

    Article  PubMed  CAS  Google Scholar 

  • Pai SI, Lin YY, Macaes B et al (2006) Prospects of RNA interference therapy for cancer. Gene Ther 13:464–477

    Article  CAS  PubMed  Google Scholar 

  • Patil Y, Sadhukha T, Ma L et al (2009) Nanoparticle mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. J Control Release 136:21–29

    Article  CAS  PubMed  Google Scholar 

  • Peer D, Karp JM, Hong S et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    Article  CAS  PubMed  Google Scholar 

  • Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16:225–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabindran SK, Ross DD, Doyle LA (2000) Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res 60:47–50

    CAS  PubMed  Google Scholar 

  • Rao W, Wang H, Han J et al (2015) Chitosan decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano 9:5725–5740

    Article  CAS  PubMed  Google Scholar 

  • Ray P, White RR (2010) Aptamers for targeted drug delivery. Pharmaceuticals 3:1761–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rountree CB, Ding W, He L et al (2009) Expansion of CD133-expressing liver cancer stem cells in liver-specific phosphatase and tensin homolog deleted on chromosome 10-deleted mice. Stem Cells 27:290–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scatena R, Bottoni P, Pontoglio A et al (2011) Cancer stem cells: the development of new cancer therapeutics. Expert Opin Biol Ther 11:875–892

    Article  PubMed  Google Scholar 

  • Sehedic D, Cikankowitz A, Hindre F et al (2015) Nanomedicine to overcome radioresistance in glioblastomastem-like cells and surviving clones. Trends Pharmacol Sci 36:236–252

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Han L, Gong T et al (2013) Systemic delivery of microRNA-34a for cancer stem cell therapy. Angew Chem Int Ed 52:3901–3905

    Article  CAS  Google Scholar 

  • Shukla S, Meeran SM (2014) Epigenetics of cancer stem cells: pathways and therapeutics. Biochim Biophys Acta 1840:3494–3502

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Zhang YS, Pang B (2014a) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53:12320–12364

    CAS  Google Scholar 

  • Sun TM, Wang YC, Wang F et al (2014b) Cancer stem cell therapy using doxorubicin conjugated to gold nanoparticles via hydrazone bonds. Biomaterials 35:836–845

    Article  CAS  PubMed  Google Scholar 

  • Sun R, Liu Y, Li SY et al (2015) Co-delivery of all-trans-retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells. Biomaterials 37:405–414

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan SK, Roger E, Toti U et al (2013) CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. J Control Release 171:280–287

    Article  CAS  PubMed  Google Scholar 

  • Tsimberidou AM, Giles FJ, Estey E et al (2006) The role of gemtuzumab ozogamicin in acute leukaemia therapy. Br J Haematol 132:398–409

    CAS  PubMed  Google Scholar 

  • Vik-Mo EO, Nyakas M, Mikkelsen BV et al (2013) Therapeutic vaccination against autologous cancer stem cells with mRNA transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother 62:1499–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinogradov S, Wei X (2012) Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond) 7:597–615

    Article  CAS  Google Scholar 

  • Voron T, Colussi O, Marcheteau E et al (2015) VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 212:139–148

    Google Scholar 

  • Wang K, Liu L, Zhang T et al (2011) Oxaliplatin-incorporated micelles eliminate both cancer stem-like and bulk cell populations in colorectal cancer. Int J Nanomed 6:3207–3218

    CAS  Google Scholar 

  • Wang K, Zhang T, Liu L et al (2012a) Novel micelle formulation of curcumin for enhancing antitumor activity and inhibiting colorectal cancer stem cells. Int J Nanomed 7:4487–4497

    CAS  Google Scholar 

  • Wang L, Su W, Liu Z et al (2012b) CD44 antibody targeted liposomal nanoparticles for molecular imaging and therapy of hepatocellular carcinoma. Biomaterials 33:5107–5114

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wang N, Li W et al (2014a) Caveolin-1 mediates chemoresistance in breast cancer stem cells via beta-catenin/ABCG2 signaling pathway. Carcinogenesis 35:2346–2356

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Huang X, Yang Z et al (2014b) Targeted delivery of tumor suppressor microRNA-1 by transferrin-conjugated lipopolyplex nanoparticles to patient-derived glioblastoma stemcells. Curr Pharm Biotechnol 15:839–846

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Senanayake TH, Warren G et al (2013) Hyaluronic acid-based nanogel-drug conjugates with enhanced anticancer activity designed for the targeting of CD44-positive and drug-resistant tumors. Bioconjug Chem 24:658–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  CAS  PubMed  Google Scholar 

  • Woehlecke H, Osada H, Herrmann A et al (2003) Reversal of breast cancer resistance protein-mediated drug resistance by tryprostatin A. Int J Cancer 107:721–728

    Article  CAS  PubMed  Google Scholar 

  • Xia P (2014) Surface markers of cancer stem cells in solid tumors. Curr Stem Cell Res Ther 9:102–111

    Article  CAS  PubMed  Google Scholar 

  • Xu CF, Liu Y, Shen S et al (2015) Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy. Biomaterials 51:1–11

    Article  PubMed  CAS  Google Scholar 

  • Yang YP, Chien Y, Chiou GY et al (2012) Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials 33:1462–1476

    Article  CAS  PubMed  Google Scholar 

  • Yao HJ, Zhang YG, Sun L et al (2014) The effect of hyaluronic acid functionalized carbon nanotubes loaded with salinomycin on gastric cancer stem cells. Biomaterials 35:9208–9223

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Wu D, Wu P et al (2014) The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumor Biol 35:3945–3951

    Article  CAS  Google Scholar 

  • Yuan F, Dellian M, Fukumura D et al (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cut off size. Cancer Res 55:3752–3756

    CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang H, Wang X et al (2012) The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials 33:679–691

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Wang Z, Luo W et al (2013a) Expression of potential cancer stem cell marker ABCG2 is associated with malignant behaviors of hepatocellular carcinoma. Gastroenterol Res Pract 2013:782581

    PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Ali MM, Eckert MA et al (2013b) A polyvalent aptamer system for targeted drug delivery. Biomaterials 34:9728–9735

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Ali MM, Brook MA et al (2008) Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. Angew Chem Int Ed 47:6330–6337

    Article  CAS  Google Scholar 

  • Zhao W, Cui CH, Bose S et al (2012) Bioinspired multivalent DNA network for capture and release of cells. Proc Natl Acad Sci USA 109:19626–19631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou BB, Zhang H, Damelin M et al (2009) Tumor-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8:806–823

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Yang J, Rhim JS et al (2013) HPMA copolymer-based combination therapy toxic to both prostate cancer stem/progenitor cells and differentiated cells induces durable anti-tumor effects. J Control Release 172:946–953

    Article  CAS  PubMed  Google Scholar 

  • Zhu G, Zheng J, Song E et al (2013) Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc Natl Acad Sci USA 110:7998–8003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mintu Pal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Pal, M., Maiti, S. (2017). Nano-therapeutic Approaches for Targeting Cancer Stem Cells. In: Jana, S., Jana, S. (eds) Particulate Technology for Delivery of Therapeutics. Springer, Singapore. https://doi.org/10.1007/978-981-10-3647-7_4

Download citation

Publish with us

Policies and ethics