Skip to main content

Introduction to Novel Therapeutic Carriers

  • Chapter
  • First Online:
Book cover Particulate Technology for Delivery of Therapeutics

Abstract

The scope of drug delivery has developed immensely in the past few decades by introducing a wide range of advanced drug delivery systems. Conventional forms of drug delivery system are generally based on pills, tablets, capsules, eye drops, ointments, and parenteral formulations. In recent times, different novel drug delivery methods have been studied. Some of the methods are chemical modification of drug, liposome that are administered into the bloodstream, and drug incorporated within pumps or polymeric materials those are administered orally, or through parenteral route or implanted in desired bodily compartments (for example, the eye or beneath the skin). This development causes increased therapeutic activity compared to the intensity of side effects, decreasing the required dose during treatment, or eliminating the need for frequent injections. Thus the newer types of delivery systems improve human health and patience compliance, and continuous research on this may transform the way many drugs are delivered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul AS, Chandewar AV, Jaiswal SB (2010) A flexible technology for modified-release drugs: multiple-unit pellet system (MUPS). J Control Release 147:2–16

    Article  CAS  PubMed  Google Scholar 

  • Albertini B, Passerini N, Di Sabatino M, Vitali B, Brigidi P, Rodriguez L (2009) Polymer-lipid based mucoadhesive microspheres prepared by spray-congealing for the vaginal delivery of econazole nitrate. Eur J Pharm Sci 36:591–601

    Article  CAS  PubMed  Google Scholar 

  • Alderman DA (1984) A review of cellulose ethers in hydrophilic matrices for oral controlled-release dosage form. Int J Pharm Tech Prod Manuf 5:1–9

    CAS  Google Scholar 

  • Ali I, Rahis U, Salim K, Rather MA, Wani WA et al (2011) Advances in nano drugs for cancer chemotherapy. Curr Cancer Drug Targets 11:135–146

    Article  CAS  PubMed  Google Scholar 

  • Allemann E, Leroux J, Gurny R (1998) Polymeric Nano- and microparticles for the oral delivery of peptides and peptidomimetics. Adv Drug Deliv Rev 34:171–189

    Article  CAS  PubMed  Google Scholar 

  • Anbarasu M, Anandan M, Chinnasamy E, Gopinath V, Balamurugan K (2015) Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochim Acta Part A Mol Biomol Spectrosc 135:536–539

    Article  CAS  Google Scholar 

  • Arangoa MA, Ponchel G, Orecchioni AM, Renedo MJ, Duchêne D, Irache JM (2000) Bioadhesive potential of gliadin nanoparticulate systems. Eur J Pharm Sci 11:333–341

    Article  CAS  PubMed  Google Scholar 

  • Avnir Y, Turjeman K, Tulchinsky D, Sigal A, Kizelsztein P (2011) Fabrication principles and their contribution to the superior in vivo therapeutic efficacy of nano-liposomes remote loaded with glucocorticoids. PLoS One 6:e25721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand N, Leroux JC (2011) The journey of a drug carrier in the body: an anatomo-physiological perspective. J Control Release 161:152–163

    Article  PubMed  Google Scholar 

  • Bhat M, Shenoy DS, Udupa N, Srinivas CR (1995) Optimization of delivery of betamethasone–dipropionate from skin preparation. Indian Drugs 32:211–214

    CAS  Google Scholar 

  • Bies C, Lehr CM, Woodley JF (2004) Lectin-mediated drug targeting: history and applications. Adv Drug Deliv Rev 56:425–435

    Article  CAS  PubMed  Google Scholar 

  • Boudad H, Legrand P, Lebas G, Cheron M, Duchene D, Ponchel G (2001) Combined hydroxypropyl-β-cyclodextrin and poly(alkylcyanoacrylate) nanoparticles intended for oral administration of saquinavir. Int J Pharm 218:113–124

    Article  CAS  PubMed  Google Scholar 

  • Brahmankar DM, Jaiswal SB (2009) Biopharmaceutics and pharmacokinetics: pharmacokinetics, 2nd edn. Vallabh Prakashan, Delhi, pp 399–401

    Google Scholar 

  • Cabanes A, Briggs KE, Gokhale PC, Treat JA, Rahman A (1998) Comparative in vivo studies with paclitaxel and liposome-encapsulated paclitaxel. Int J Oncol 12:1035–1040

    CAS  PubMed  Google Scholar 

  • Chen Y, Mohanraj VJ, Wang F, Benson HA (2007) Designing chitosan-dextran sulfate nanoparticles using charge ratios. AAPS PharmSciTech 8:E98

    Article  PubMed  Google Scholar 

  • Cortese R, Theeuwes F (1982) Osmotic device with hydrogel driving member, US patent 4327725

    Google Scholar 

  • Costa P (2001) Modeling and comparison of dissolution profile. Eur J Pharm Sci 13:123–133

    Article  CAS  PubMed  Google Scholar 

  • Couvreur P, Puisieux F (1993) Nano and microparticles for the delivery of polypeptides and proteins. Adv Drug Deliv Rev 10:141–162

    Article  CAS  Google Scholar 

  • Cramer MP, Saks SR (1994) Translating safety, efficacy and compliance into economic value for controlled release dosage forms. Pharmacoeconomics 5:482–504

    Article  CAS  PubMed  Google Scholar 

  • Das S, Banerjee R, Bellare J (2005) Aspirin loaded albumin nanoparticles by coacervation: implications in drug delivery. Trends Biomater Artif Organs 18:203–212

    Google Scholar 

  • Dasgupta Q, Madras G, Chatterjee K (2016) Controlled release kinetics of p-aminosalicylic acid from biodegradable crosslinked polyesters for enhanced anti-mycobacterial activity. Acta Biomater 30:168–176

    Article  CAS  PubMed  Google Scholar 

  • Desai KG, Park HJ (2005) Preparation of cross-linked chitosan microspheres by spray drying: effect of cross-linking agent on the properties of spray dried microspheres. J Microencapsulation 22:377–395

    Article  CAS  PubMed  Google Scholar 

  • Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL (1997) The mechanism of uptake of biodegradable microparticles in caco-2 cells is size dependent. Pharm Res 14:1568–1573

    Article  CAS  PubMed  Google Scholar 

  • Dorati R, Genta I, Colonna C et al (2007) Investigation of the degradation behavior of poly(ethylene glycolco-d, l-lactide) copolymer. Polym Degrad Stab 92:1660–1668

    Article  CAS  Google Scholar 

  • Fara JW, Myrback RE, Swanson DR (1985) Evaluation of oxprenolol and metoprolol Oros systems in the dog: comparison of in vivo and in vitro drug release, and of drug absorption from duodenal and colonic infusion sites. Br J Clin Pharmacol 19:91–95

    Article  Google Scholar 

  • Fasano A, Uzzau S (1997) Modulation of intestinal tight junctions by Zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J Clin Invest 99:1158–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freiberg S, Zhu X (2004) Polymer microspheres for controlled drug release. Int J Pharm 282:1–18

    Article  CAS  PubMed  Google Scholar 

  • Fung LK, Saltzman WM (1997) Polymeric implants for cancer chemotherapy. Adv Drug Deliv Rev 26:209–230

    Article  CAS  PubMed  Google Scholar 

  • Gabizon A, Shmeeda H, Barenholz Y (2003) Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin Pharmacokinet 42:419–436

    Article  CAS  PubMed  Google Scholar 

  • Gandhi A, Paul A, Sen SO, Sen KK (2015) Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci 10:99–107

    Article  Google Scholar 

  • George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan—a review. J Controlled Release 114:1–14

    Article  CAS  Google Scholar 

  • Haag R, Kratz F (2006) Polymer therapeutics: concepts and applications. Angew Chem Int Ed 45:1198–1215

    Article  CAS  Google Scholar 

  • Heidel JD, Davis ME (2011) Clinical developments in nanotechnology for cancer therapy. Pharm Res 28:187–199

    Article  CAS  PubMed  Google Scholar 

  • Heller J (1980) Controlled release of biologically active compounds from bioerodible polymers. Biomaterials 1:51–57

    Article  CAS  PubMed  Google Scholar 

  • Henry S, McAllister D, Allen MG, Prausnitz MR (1998) Microfabricated microneedles: a novel method to increase transdermal drug delivery. J Pharm Sci 87:922–925

    Article  CAS  PubMed  Google Scholar 

  • Higuchi T (1963) Mechanism of sustained action medication: theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 52:1145–1149

    Article  CAS  PubMed  Google Scholar 

  • Higuchi T, Leeper HM (1973) Improved osmotic dispenser employing magnesium sulfate and magnesium chloride. US Patent 3760804

    Google Scholar 

  • Higuchi T, Leeper HM (1976) Osmotic dispenser with means for dispensing active agent responsive to osmotic gradient. US Patent 3995631

    Google Scholar 

  • Hogan JE (1989) Hydroxypropylmethylcellulose sustained release technology. Drug Dev Ind Pharm 15:975–999

    Article  CAS  Google Scholar 

  • Huang GQ, Sun YT, Xiao JX, Yang J (2012) Complex coacervation of soybean protein isolate and chitosan. Food Chem 135:534–539

    Article  CAS  PubMed  Google Scholar 

  • Jana S, Maji N, Nayak AK, Sen KK, Basu SK (2013a) Development of chitosan-based nanoparticles through inter-polymeric complexation for oral drug delivery. Carbohyd Polym 98:870–876

    Article  CAS  Google Scholar 

  • Jana S, Lakshman D, Sen KK, Basu SK (2010) Development and evaluation of epichlorohydrin cross-linked mucoadhesive patches of tamarind seed polysaccharide for buccal application. Int J Pharma Sci Drug Res 2:193–198

    CAS  Google Scholar 

  • Jana S, Samanta A, Nayak AK, Sen KK, Jana S (2015) Novel alginate hydrogel core–shell systems for combination delivery of ranitidine HCl and aceclofenac. Int J Biol Macromol 74:85–92

    Article  CAS  PubMed  Google Scholar 

  • Jana S, Das A, Nayak AK, Sen KK, Basu SK (2013b) Aceclofenac-loaded unsaturated esterified alginate/gellan gum microspheres: in vitro and in vivo assessment. Int J Biol Macromol 57:129–137

    Article  CAS  PubMed  Google Scholar 

  • Jana S, Manna S, Nayak AK, Sen KK, Basu SK (2014) Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids Surf B 114:36–44

    Article  CAS  Google Scholar 

  • Jana S, Saha A, Nayak AK, Sen KK, Basu SK (2013c) Aceclofenac-loaded chitosan-tamarind seed polysaccharide interpenetrating polymeric network microparticles. Colloids Surf B 105:303–309

    Article  CAS  Google Scholar 

  • Jerzewski RL, Chien YW (1992) Osmotic drug delivery. In: Kydonieus A (ed) Treatise on controlled drug delivery: fundamentals, optimization, application. Marcel Dekker, New York, pp 225–253

    Google Scholar 

  • Jung J, Perrut M (2001) Particle design using supercritical fluids: literature and patent survey. J Supercritical Fluids 20:179–219

    Article  CAS  Google Scholar 

  • Kaminskas LM, Boyd BJ, Porter CJ (2011) Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME Properties. Nanomedicine 6:1063–1084

    Article  CAS  PubMed  Google Scholar 

  • Katz JL, Ambrose CG, Mcmillin C, Spencer P (2004) Encyclopedia of biomaterials and biomedical engineering. Marcel Dekker, New York (Orthopedic biomaterials)

    Google Scholar 

  • Khandai M, Chakraborty S, Sharma A, Pattnaik S (2010) Preparation and evaluation of algino-sericin mucoadhesive microspheres: an approach for sustained drug delivery. J Adv Pharm Res 1:48–60

    Google Scholar 

  • Kompella UB, Bandi N, Ayalasomayajula SP (2001) Poly (lactic acid) nanoparticles for sustained release of budesonide. Drug Deliv Technol 1:1–7

    Google Scholar 

  • Koo H, Huh MS, Sun IC, Yuk SH, Choi K, Kim K, Kwon I (2011) In vivo targeted delivery of nanoparticles for theranosis. Acc Chem Res 44:1018–1028

    Article  CAS  PubMed  Google Scholar 

  • Kopcha M, Lordi N, Tojo KJ (1991) Evaluation of release from selected thermosoftening vehicles. J Pharm Pharmacol 43:382–387

    Article  CAS  PubMed  Google Scholar 

  • Korting HC, Schafer-Korting M (2010) Carriers in the topical treatment of skin disease. Handb Exp Pharmacol 197:435–468

    Article  CAS  Google Scholar 

  • Krishna R, Pandit JK (1996) Carboxymethylcellulose-sodium based transdermal drug delivery system for propranolol. J Pharm Pharmacol 48:367–370

    Article  CAS  PubMed  Google Scholar 

  • Langer R (1990) New methods of drug delivery. Science 249:1527–1533

    Article  CAS  PubMed  Google Scholar 

  • Larsen EKU, Nielsen T, Wittenborn T, Birkedal H, Vorup-Jensen T, Jakobsen MH, Østergaard L, Horsman MR, Besenbacher F, Howard KA, Kjems J (2009) Size-dependent accumulation of pegylated silane-coated magnetic iron oxide nanoparticles in murine tumors. ACS Nano 3:1947–1951

    Article  CAS  PubMed  Google Scholar 

  • Lee PI (1986) In: Advances in drug delivery systems. In: Anderson JM, Kim SW (eds.), Elsevier, Amsterdam, p 277

    Google Scholar 

  • Lee PI, Peppas NA (1987) Prediction of polymer dissolution in swellable controlled-release systems. J Control Release 6:207–215

    Article  CAS  Google Scholar 

  • Lehr CM (2000) Lectin-mediated drug delivery: the second generation of bioadhesives. J Control Rel 65:19–29

    Article  CAS  Google Scholar 

  • Li R, Xie L, Zhu Z, Liu Q, Hu Y (2011a) Reversion of pH-induced physiological drug resistance: a novel function of copolymeric nanoparticles. PLoS One 6:e24172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li RR, Zhang XX, Shi HF (2011b) Effect of manufacturing parameters on the release profiles of casein loaded alginate microspheres prepared by emulsification/internal gelation. J Controlled Release 152:133–191

    Article  Google Scholar 

  • Malakar J, Sen SO, Nayak AK, Sen KK (2012) Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm J 20:355–363

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin FJ, Grove C (2001) Xlicrofabricated drug delivery systems: concepts to improve clinical benefit. Biomed Microdev 3:97–108

    Article  CAS  Google Scholar 

  • McAllister DV, Wang PM, Davis SP, Park JH, Canatella PJ, Allen MG, Prausnitz MR (2003) Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci USA 100:13755–13760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAllister DV, Allen MG, Prausnitz MR (2000) Microfabricated microneedles for gene and drug delivery. Annu Rev Biomed Eng 2:289–313

    Article  CAS  PubMed  Google Scholar 

  • Merodio M, Irache JM, Valamanesh F, Mirshahi M (2002) Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats. Biomaterials 23:1587–1594

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S (2003) Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeation pathways. J Control Release 86:69–92

    Article  CAS  PubMed  Google Scholar 

  • Müller RH, Peters K (1998) Nanosuspensions for the formulation of poorly soluble drugs: I preparation by a size-reduction technique. Int J Pharm 160:229–237

    Article  Google Scholar 

  • Nayak AK, Laha B, Sen KK (2011) Development of hydroxy apatite-ciprofloxacin bone implants using quality by design. Acta Pharm 61:25–26

    Article  CAS  PubMed  Google Scholar 

  • Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y (1993) Preparation of biodegradable nanoparticles of water-soluble and insoluble drugs with d, llactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. J Control Release 25:89–98

    Article  CAS  Google Scholar 

  • O’Connor CJ, Kolesnichenko VL, Carpenter EE, Sangregorio C, Zhou W, Kumbhar A, Sims J, Agnoli F (2001) Fabrication and properties of magnetic particles with nanometer dimensions. Synth Met 122:547–557

    Article  Google Scholar 

  • Panchagnula R (1997) Transdermal delivery of drugs. Indian J Pharm 29:140–156

    CAS  Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    Article  CAS  PubMed  Google Scholar 

  • Peck KD, Ghanem AH, Higuchi WI (1994) Hindered diffusion of polar molecules through and effective pore radii estimates of intact and ethanol treated human epidermal membrane. Pharm Res 11:1306–1314

    Article  CAS  PubMed  Google Scholar 

  • Peppas NA (1987) Hydrogels in medicine and pharmacy (vol 3, properties and applications). CRC Press, Boca Raton, pp vii+195

    Google Scholar 

  • Peppas NA, Sahlin JJ (1989) A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm 57:69–172

    Article  Google Scholar 

  • Pillai O, Panchagnula R (2001) Polymers in drug delivery. Curr Opin Chem Biol 5:447–451

    Article  CAS  PubMed  Google Scholar 

  • Pinto Reis C, Neufeld RJ, Ribeiro ANJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug loaded polymeric nanoparticles. Nanomedicine: nano-technology. Biol Med 2:8–21

    Google Scholar 

  • Rao PR, Diwan PV (1997) Permeability studies of cellulose acetate free films for transdermal use: influence of plasticizers. Pharm Acta Helv 72:47–51

    Article  CAS  PubMed  Google Scholar 

  • Rao PR, Diwan PV (1998) Formulation and in vitro evaluation of polymeric films of diltiazem hydrochloride and indomethacin for transdermal administration. Drug Dev Indian Pharm 24:327–336

    Article  CAS  Google Scholar 

  • Ratsimbazafy V, Bourret E, Duclos R, Brossard C (1999) Rheological behavior of drug suspensions in Gelucire mixtures and proxyphylline release from matrix hard gelatin capsules. Eur J Pharm Biopharm 48:247–252

    Article  CAS  PubMed  Google Scholar 

  • Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2:8–21

    Article  CAS  Google Scholar 

  • Saffran M, Kumar GS, Neckers DC, Peña J, Jones RH, Field JB (1990) Biodegradable azopolymer coating for oral delivery of peptide drugs. Biochem Soc Trans 18:752–754

    Article  CAS  PubMed  Google Scholar 

  • Salehi A, Zhao J, Cabelka TD, Larson RG (2016) A unified multicomponent stress-diffusion model of drug release from non-biodegradable polymeric matrix tablets. J Controlled Release 224:43–58

    Article  CAS  Google Scholar 

  • Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 128:2900–2906

    Article  Google Scholar 

  • Schwarz UI, Gramatté T, Krappweis J, Oertel R, Kirch W (2000) P-glycoprotein inhibitor erythromycin increases oral bioavailability of talinolol in humans. Int J Clin Pharmacol Ther 38:161–167

    Article  CAS  PubMed  Google Scholar 

  • Selvan ST, Tan TT, Ying JY (2007) Robust, non-cytetoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv Mater 17:1620–1625

    Article  Google Scholar 

  • Siepmann J (2001) Modeling of drug release from delivery system based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 48:139–157

    Article  CAS  PubMed  Google Scholar 

  • Siepmann J, Siepmann F (2008) Mathematical modeling of drug delivery. Int J Pharm 364:328–343

    Article  CAS  PubMed  Google Scholar 

  • Svenson Sönke (2004) Carrier-based drug delivery. American Chemical Society, Washington, D.C., p 4

    Book  Google Scholar 

  • Tago T, Shibata Y, Hatsuta T, Miyajima K, Kishida M, Tashiro S, Wakabayashi K (2002) Synthesis of silica-coated rhodium nanoparticles in reversedmicellar solution. J Mater Sci 128:977–982

    Article  Google Scholar 

  • Tao SL, Desai TA (2003) Microfabricated drug delivery systems: from particles to pores. Adv Drug Deliv Rev 55:315–328

    Article  CAS  PubMed  Google Scholar 

  • Thacharodi D, Rap KP (1995) Development and in vitro evaluation of chitosan-based transdermal drug delivery system for the controlled delivery of propranolol hydrochloride. Biomaterials 16:145–148

    Article  CAS  PubMed  Google Scholar 

  • Thompson CJ, Hansford D, Higgins S, Rostron C, Hutcheon GA (2007) Evaluation of ibuprofen-loaded microspheres prepared from novel copolyesters. Int J Pharm 329:53–61

    Article  CAS  PubMed  Google Scholar 

  • Thote AJ, Gupta RB (2005) Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release. Nanomedicine 1:85–90

    Article  CAS  PubMed  Google Scholar 

  • Verma RK, Krishna DM, Garg S (2002) Formulation aspects in the development of osmotically controlled oral drug delivery systems. J Control Release 79:7–27

    Article  CAS  PubMed  Google Scholar 

  • Xing-Gang Y, Guo-Hua Z, Wei L, Bo P, Zhi-Dong L, Wei-San P (2006) Design and evaluation of Jingzhiguanxin monolithic osmotic pump tablet. Chem Pharm Bull 54:465–469

    Article  Google Scholar 

  • Zambaux M, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso M, Labrude P, Vigneron C (1998) Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by double emulsion method. J Control Release 50:31–40

    Article  CAS  PubMed  Google Scholar 

  • Zentner GM, Rork GS, Himmelstein KJ (1985) The controlled porosity osmotic pump. J Control Release 1:269–282

    Article  CAS  Google Scholar 

  • Zhang S, Chu Z, Yin C, Zhang C, Lin G, Li Q (2013) Controllable drug release and simultaneously carrier decomposition of SiO2-drug composite nanoparticles. J Am Chem Soc 135:5709–5716

    Article  CAS  PubMed  Google Scholar 

  • Zhang YW, Jin QR, Zhao JX, Wu CX, Fan QQ, Wu QM (2010) Facile fabrication of pH-sensitive core–shell nanoparticles based on HEC and PMAA via template polymerization. Eur Polymer J 46:1425–1435

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyan Kumar Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Jana, S., Sen, S.O., Sen, K.K. (2017). Introduction to Novel Therapeutic Carriers. In: Jana, S., Jana, S. (eds) Particulate Technology for Delivery of Therapeutics. Springer, Singapore. https://doi.org/10.1007/978-981-10-3647-7_1

Download citation

Publish with us

Policies and ethics