Skip to main content

Digital Soil Mapping and Best Management of Soil Resources: A Brief Discussion with Few Case Studies

  • Chapter
  • First Online:

Abstract

Soil plays a key role in agricultural production system by supporting plant growth as well as in hydrological cycle by partitioning rainwater into runoff and infiltration. Therefore, knowledge on soil properties helps in better management of both soil and water resources for sustainable crop production. However, soils vary largely in space and therefore characterizing it for a particular landscape with a set of soil parameters is a difficult task. Often, there is need to collect multiple soil samples from a landscape for characterization purpose in order to minimize the spatial variation effect and is not always feasible. Most of the times, a homogeneous zone is assumed with similar soil properties to eliminate the variation effect. Soil mapping helps in characterizing the soil resources in a better way and recently introduced digital soil mapping approach is more appropriate for this purpose. In this approach, spatial variation of soil properties and its relation with other landscape and environment variables in the form of ‘scorpan’ factors are considered while mapping soil properties in a spatial domain. Mathematical models are also established between soil properties and environment variables exploiting the available legacy soil data and hugely available digital data on earth features in recent times. Hyperspectral soil signatures have also a potential role to improve the digital soil products further. In this chapter, we discuss the basics of digital soil mapping approach and its needs, semivariogram fitting, kriging and its variations, accuracy and uncertainty of digital maps, role of pedotransfer (PTF) and spectrotransfer (STF) models in digital soil mapping, future prospect of hyperspectral signatures in mapping soil properties and few cases studies on digital soil mapping. Finally, it is expected that digital soil maps are available in different IT platforms, e.g. internet, desktop computer, mobile apps, webGIS platform, etc., to make them useful to end users.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adhikary PP, Chakraborty D, Kalra N, Sachdev CB, Patra AK, Kumar S, Tomar RK, Chandna P, Raghav D, Agrawal K, Sehgal M (2008) Pedotransfer functions for predicting the hydraulic properties of Indian soils. Soil Res 46(5):476–484

    Article  Google Scholar 

  • Arya LM, Paris JF (1981) A physicoempirical model to predict soil moisture characteristics from particle-size distribution and bulk density data. Soil Sci Soc Am J 45:1023–1030

    Article  Google Scholar 

  • Bachmann J, Hartze KH (1992) Estimating soil-water characteristics obtained by basic soil data-a comparison of indirect methods. Z Pflanzenernaehr Bodenkd 155(2):109–114

    Article  Google Scholar 

  • Bechini L, Bocchi S, Maggiore T (2003) Spatial interpolation of soil physical properties for irrigation planning. A simulation study in northern Italy. Eur J Agron 19:1–14

    Article  Google Scholar 

  • Ben-Dor E, Banin A (1995) Near infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci Soc Am J 59:364–372

    Article  CAS  Google Scholar 

  • Ben-Dor E, Inbar Y, Chen Y (1997) The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400–2500 nm) during a controlled decomposition process. Remote Sens Environ 61:1–15

    Article  Google Scholar 

  • Bishop TFA, Lark RM (2008) A comparison of parametric and non-parametric methods for modelling a coregionalization. Geoderma 148:13–24

    Article  Google Scholar 

  • Bliss NB, Waltman SW, Petersen GW (1995) Preparing a soil carbon inventory for the United States using geographic information systems. In: Lal R, KImble J, Levine E, Stewart BA (eds) Soils and global change. CRC Press, Boca Raton, pp 275–295

    Google Scholar 

  • Blöschl G, Sivapalan M (1995) Scale issues in hydrological modelling—a review. Hydrol Process 9:251–290

    Article  Google Scholar 

  • Børgesen CD, Schaap MG (2005) Point and parameter pedotransfer functions for water retention prediction for Danish soils. Geoderma 127:154–167

    Article  Google Scholar 

  • Bouma J (1980) Field measurement of soil hydraulic properties characterizing water movement through swelling clay soils. J Hydrol 45(1):149–158

    Google Scholar 

  • Bouma J (1989) Using soil survey data for quantitative land evaluation. In: Stewart BA (ed) Advances in soil science. Springer, New York, pp 177–213

    Chapter  Google Scholar 

  • Brown DJ, Shepherd KD, Walsh MG, Dewayne Mays M, Reinsch TG (2006) Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma 132:273–290

    Article  CAS  Google Scholar 

  • Carsel RF, Parrish RS (1988) Developing joint probability distributions of soil water retention characteristics. Water Resour Res 24:755–769

    Article  Google Scholar 

  • Chakraborty D, Mazumdar SP, Garg RN, Banerjee S, Santra P, Singh R, Tomar RK (2011) Pedotransfer functions for predicting points on the moisture retention curve of Indian soils. Indian J Agric Sci 81(11):1030

    Google Scholar 

  • Chakraborty S, Das BS, Ali MN, Li B, Sarathjith MC, Majumdar K, Ray DP (2014) Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning. Waste Manag 34(3):623–631

    Article  CAS  Google Scholar 

  • Chang C, Laird DA, Mausbach MJ, Hurburgh CR (2001) Near-infrared reflectance spectroscopy–principal component regression analyses of soil properties. Soil Sci Soc Am J 65:480–490

    Article  CAS  Google Scholar 

  • Cosby BJ, Hornberger GM, Clapp RB, Ginn TR (1984) A statistical exploration of soil moisture characteristics to the physical properties of soils. Water Resour Res 20:682–690

    Article  Google Scholar 

  • Das BS, Sarathjith MC, Santra P, Srivastava R, Sahoo RN, Routray A, Ray SS (2015) Hyperspectral remote sensing: opportunities, status and challenges for rapid soil assessment in India. Curr Sci 108(5):860–868

    Google Scholar 

  • David M (1977) Geostatistical ore reserve estimation. Elsevier, Amsterdam

    Google Scholar 

  • Dematte JAM, Campos RC, Alves MC, Fiorio PR, Nanni MR (2004) Visible-NIR reflectance: a new approach on soil evaluation. Geoderma 121:95–112

    Article  CAS  Google Scholar 

  • Dokuchaev VV (1883) Russian Chernozems (Russkii Chernozems). Israel Prog Sci Trans, Jerusalem (Transl. from Russian by N. Kaner (1967), available from U.S. Dept. of Commerce, Springfield)

    Google Scholar 

  • Dunn BW, Beecher HG, Batten GD, Ciavarella S (2002) The potential of near-infrared reflectance spectroscopy for soil analysis—a case study from the Riverine Plain of south-eastern Australia. Aust J Exp Agric 42(5):607–614

    Article  Google Scholar 

  • Escadafal R, Girard M, Courault D (1989) Munsell soil color and soil reflectance in the visible spectral bands of Landsat MSS and TM data. Remote Sens Environ 27:37–46

    Article  Google Scholar 

  • Farifteh J, van dan Meer F, Atzberger C, Carranza EJM (2007) Quantitative analysis of salt affected soils reflectance spectra: a comparison of two adaptive methods (PLSR and ANN). Remote Sens Environ 110:59–78

    Article  Google Scholar 

  • Franzmeier DP (1991) Estimation of hydraulic conductivity from effective porosity data for some Italian soils. Soil Sci Soc Am J 55:1801–1803

    Article  Google Scholar 

  • Goovaerts P (1998) Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biology and Fertility of soils 27(4): 315-334

    Google Scholar 

  • Grunwald S (2009) Multicriteria characterization of recent digital soil mapping and modeling approaches. Geoderma 152:195-207

    Google Scholar 

  • Gupta SC, Larson WE (1979) Estimating soil water characteristics from particle size distribution, organic matter percent, and bulk density. Water Resour Res 15:1633–1635

    Article  Google Scholar 

  • Haverkamp R, Parlange JY (1986) Predicting the water retention curve from particle size distribution. Soil Sci 142:325–339

    Article  Google Scholar 

  • Henderson TL, Szilagyi A, Baumgardner MF, Chen CT, Landgrebe DA (1989) Spectral band selection for classification of soil organic matter content. Soil Sci Soc Am J 53:1778–1784

    Article  CAS  Google Scholar 

  • Henley S (1981) Nonparametric geostatistics. Applied Science, London

    Book  Google Scholar 

  • Huang S, Liu Q, Li X, Liu Q (2005) Spectral analysis of soil using grey system theory, pp 4455–4457. 0-7803-9050-4/05/$20.00© 2005 IEEE

    Google Scholar 

  • Hudson BD (1992) The soil survey as paradigm-based science. Soil Sci Soc Am J 56:836–841

    Article  Google Scholar 

  • Huijbregts CH (1975) In: Davis JC, McCullough MJ (eds) Display and analysis of spatial data. Wiley, New York, pp 38–53

    Google Scholar 

  • Islam K, Singh B, McBratney A (2003) Simultaneous estimation of several soil properties by ultra-violet, visible, and near infrared reflectance spectroscopy. Aust J Soil Res 41(6):1101–1114

    Article  CAS  Google Scholar 

  • Janik LJ, Cozzolino D, Dambergs R, Cynkar W, Gishen M (2007) The prediction of total anthocyanin concentration in red-grape homogenates using visible-near-infrared spectroscopy and artificial neural networks. Analytica chimica acta 594(1):107-18

    Google Scholar 

  • Jenny H (1941) Factors of soil formation. McGraw Hill, New York

    Google Scholar 

  • Jiang J, Zhu AX, Qin CZ, Zhu T, Liu J, Du F, Liu J, Zhang G, An A (2016) CyberSoLIM: a cyber platform for digital soil mapping. Geoderma 263:234–243

    Article  Google Scholar 

  • Journel AG, Huijbregts CH (1978) Mining geostatistics. Academic Press, New York

    Google Scholar 

  • Kerr RA (2007) Scientists tell policy makers we are all warming the world. Science 315:754–757

    Article  CAS  Google Scholar 

  • Krige DA (1951) A statistical approach to some mine valuation and allied problems on the Witwatersrad. Unpublished master thesis, University of Witwatersrand

    Google Scholar 

  • Lagacherie P, McBratney AB (2006) Spatial soil information systems and spatial soil inference systems: perspectives for digital soil mapping. In: Development in Soil Science, (Eds P Lagacherie, AB McBRatney and M Voltz), Elsevier, Volume 31, pp 3–22

    Google Scholar 

  • Lagacherie P, McBratney AB, Voltz M (2006) Digital soil mapping: an introductory perspective. Elsevier, Amsterdam

    Google Scholar 

  • Lagacherie P, Baret F, Feret JB, Madeira Netto J, Robbez-Masson JM (2008) Estimation of soil clay and calcium carbonate using laboratory, field, and airborne hyperspectral measurements. Remote Sens Environ 112(3):825–835

    Article  Google Scholar 

  • Lal R (2008) Carbon sequestration. Philos Trans R Soc Lond B 363:815–830

    Article  CAS  Google Scholar 

  • Lark RM (2000) A comparison of some robust estimators of the variogram for use in soil survey. Eur J Soil Sci 51:137–157

    Article  Google Scholar 

  • Leij FJ, Alves WJ, van Genuchten MT, Williams JR (1996) The UNSODA unsaturated soil hydraulic database, version 1.0, EPA report EPA/600/R-96/095. EPA National Risk Management Laboratory, G-72, Cincinnati. http://www.ussl.ars.usda.gov/MODELS/unsoda.htm. Verified 31 Jan 2000

  • Leone AP, Escadafal R (2001) Statistical analysis of soil color and spectroradiometric data for hyperspectral remote sensing of soil properties (example in a southern Italy Mediterranean ecosystem). Int J Remote Sens 22(12):2311–2328

    Article  Google Scholar 

  • Leone AP, Somer S (2000) Multivariate analysis of laboratory spectra for the assessment of soil development and soil degradation in the Southern Apennines (Italy). Remote Sens Environ 72:346–359

    Article  Google Scholar 

  • Matheron G (1962) Traité de Géostatistique Appliquée, Tome I. Mémoires du Bureau de Recherches Géologiques et Minièrs 14. Éditions Technique, Paris

    Google Scholar 

  • Mathieu R, Pouget M, Cervelle B, Escadafal R (1998) Relationship between satellite based radiometric indices simulated using laboratory reflectance data and typic soil color of an arid environment. Remote Sens Environ 66:17–28

    Article  Google Scholar 

  • McBratney AB, MendonçaSantos ML, Minasny B (2003) On digital soil mapping. Geoderma 117:3–52

    Article  Google Scholar 

  • McCarty GW, Reeves GB III, Reeves VB, Follett RF, Kimble JM (2002) Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Sci Soc Am J 66:640–646

    Article  CAS  Google Scholar 

  • Minasny B, McBratney AB (2002) The neuro-m method for fitting neural network parametric pedotransfer functions. Soil Sci Soc Am J 66:352–361

    CAS  Google Scholar 

  • Minasny B, McBratney AB (2016) Digital soil mapping: a brief history and some lessons. Geoderma. doi:10.1016/j.geoderma.2015.07.017

  • Minasny B, McBratney AB, Bristow KL (1999) Comparison of different approaches to the development of pedotransfer functions of water retention curves. Geoderma 93:225–253

    Article  Google Scholar 

  • Mohanty B, Gupta A, Das BS (2016) Estimation of weathering indices using spectral reflectance over visible to mid-infrared region. Geoderma 266:111–119

    Article  Google Scholar 

  • Moran CJ, Bui EN (2002) Spatial data mining for enhanced soil map modelling. Int J Geogr Inf Sci 16:533–549

    Article  Google Scholar 

  • Morra MJ, Hall MH, Freeborn LL (1991) Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy. Soil Sci Soc Am J 55:288–291

    Article  CAS  Google Scholar 

  • Nawar S, Buddenbaum H, Hill J, Kozak J (2014) Modeling and mapping of soil salinity with reflectance spectroscopy and landsat data using two quantitative methods (PLSR and MARS). Remote Sens (Basel) 6:10813–10834

    Article  Google Scholar 

  • Pachepsky YA, Timlin D, Varallyay G (1996) Artificial neural networks to estimate soil water retention from easily measurable data. Soil Sci Soc Am J 60:727–733

    Article  CAS  Google Scholar 

  • Pachepsky YA, Timlin DJ, Rawls WJ (2001) Soil water retention as related to topographical variables. Soil Sci Soc Am J 65:1787–1795

    Article  CAS  Google Scholar 

  • Padarian J, Minasny B, McBratney AB (2015) Using Google’s cloud-based platform for digital soil mapping. Comput Geosci 83:80–88

    Article  Google Scholar 

  • Puckett WE, Dane JH, Hajek BF (1985) Physical and mineralogical data to determine soil hydraulic properties. Soil Sci Soc Am J 49:831–836

    Article  Google Scholar 

  • Rawls WJ, Brakensiek DL (1985) Prediction of soil water properties for hydrologic modeling. In: Jones EB, Ward TJ (eds) Watershed management in the eighties. Proc Irrig Drain div, ASCE, Denver, 30 Apr–1 May 1985. American Society of Civil Engineers, New York, pp 293–299

    Google Scholar 

  • Rawls WJ, Brakensiek DL, Saxton KE (1982) Estimation of soil water properties. Trans ASAE 25:1316–1320

    Article  Google Scholar 

  • Rawls WJ, Gish TJ, Brakensiek DL (1991) Estimating soil water retention from soil physical properties and characteristics. Adv Soil Sci 16:213–234

    Article  Google Scholar 

  • Reeves J, McCarty G, Mimmo T (2002) The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils. Environ Pollut 116:S277–S284

    Article  CAS  Google Scholar 

  • Romano N, Palladino M (2002) Prediction of soil water retention using soil physical data and terrain attributes. J Hydrol 265:56–75

    Article  Google Scholar 

  • Sahadevan AS, Shrivastava P, Das BS, Sarathjith MC (2014) Discrete wavelet transform approach for the estimation of crop residue mass from spectral reflectance. IEEE J Sel Top Appl Earth Observ Remote Sens 7(6):2490–2495

    Article  Google Scholar 

  • Santra P (2001) Pedotransfer functions for typic ustochrept and typic ustifluvent of IARI farm. MSc thesis, Indian Agricultural Research Institute, New Delhi

    Google Scholar 

  • Santra P, Das BS (2008) Pedo-transfer functions for soil hydraulic properties developed from a hilly watershed of Eastern India. Geoderma 146(3–4):439–448

    Article  Google Scholar 

  • Santra P, Chopra UK, Chakraborty D (2008) Spatial variability of soil properties in agricultural farm and its application in predicting surface map of hydraulic property. Curr Sci 95(7):937–945

    CAS  Google Scholar 

  • Santra P, Sahoo RN, Das BS, Samal RN, Pattanaik AK, Gupta VK (2009) Estimation of soil hydraulic properties using proximal spectral reflectance in visible, near-infrared, and shortwave-infrared (VIS-NIR-SWIR) region. Geoderma 152:338–349

    Article  Google Scholar 

  • Santra P, Kumwat RN, Mertia RS, Mahla HR, Sinha NK (2012) Soil organic carbon stock density and its spatial variation within a typical agricultural farm from hot arid ecosystem of India. Curr Sci 102(9):1303–1309

    CAS  Google Scholar 

  • Santra P, Kumar R, Sarathjith MC, Panwar NR, Varghese P, Das BS (2015) Reflectance spectroscopic approach for estimation of soil properties in hot arid western Rajasthan, India. Environ Earth Sci 74:4233–4245

    Article  CAS  Google Scholar 

  • Sarathjith M, Das BS, Vasava HB, Sahadevan AS, Wani SP (2014) Diffuse reflectance spectroscopic approach for the characterization of soil aggregate size distribution. Soil Sci Soc Am J 78(2):369–376

    Article  Google Scholar 

  • Sarathjith MC, Das BS, Wani SP, Sahrawat KL (2016) Variable indicators for optimum wavelength selection in diffuse reflectance spectroscopy of soils. Geoderma 267:1–9

    Article  CAS  Google Scholar 

  • Saxton KE, Rawls WJ, Romberger JS, Papendick RI (1986) Estimating generalized soil-water characteristics from texture. Soil Sci Soc Am J 50:1031–1036

    Article  Google Scholar 

  • Schaap MG, Leij FJ, Van Genuchten MT (2001) Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251:163–176

    Article  Google Scholar 

  • Scheinost AC, Sinowski W, Auerswald A (1997) Regionalization of soil water retention curves in a highly variable soilscape, I. Developing a new pedotransfer function. Geoderma 78:129–143

    Article  Google Scholar 

  • Sharma SK, Mohanty BP, Zhu J (2006) Including topography and vegetation attributes for developing pedotransfer functions. Soil Sci Soc Am J 70:1430–1440

    Article  CAS  Google Scholar 

  • Shepherd KD, Walsh MG (2002) Development of reflectance spectral libraries for characterization of soil properties. Soil Sci Soc Am J 66:988–998

    Article  CAS  Google Scholar 

  • Shrestha RP (2006) Relating soil electrical conductivity to remote sensing and other soil properties for assessing soil salinity in northeast Thailand. Land Degrad Dev 17(6):677–689

    Article  Google Scholar 

  • Singh SK, Singh AK, Sharma BK, Tarafdar JC (2007) Carbon stock and organic carbon dynamics in soils of Rajasthan, India. J Arid Environ 68(3):408–421

    Article  Google Scholar 

  • Stevens A, van Wesemael B, Vandenshrick G, Toure S, Tychon B (2006) Detection of carbon stock changes in agricultural soil using spectroscopic techniques. Soil Sci Soc Am J 70:844–850

    Article  CAS  Google Scholar 

  • Sullivan J (1984) Conditional recovery estimation through probability kriging—theory and practice. In Geostatistics for natural resourcescharacterization (pp. 365-384). Springer Netherlands.

    Google Scholar 

  • Teitje O, Tapkenhenrichs M (1993) Evaluation of pedo-transfer functions. Soil Sci Soc Am J 57:1088–1095

    Article  Google Scholar 

  • Thine C, Shephered K, Walsh M, Coe R, Okwach G (2004) Application of GIS and remote sensing in characterization of soil hydraulic properties for soil physical quality assessment. University of Nairobi, Nairobi, pp 1–18

    Google Scholar 

  • Tomasella J, Hodnett MG (1998) Estimating soil water retention characteristics from limited data in Brazilian Amazonia. Soil Sci 163:190–202

    Article  CAS  Google Scholar 

  • Tomasella J, Pachepsky Y, Crestana S, Rawls WJ (2003) Comparison of two techniques to develop pedotransfer functions for water retention. Soil Sci Soc Am J 67:1085–1092

    Article  CAS  Google Scholar 

  • Tomlinson R (1978) Design considerations for digital soil map systems. In: 11th congress of soil science, ISSS, Edmonton

    Google Scholar 

  • van Genuchten MT (1980) A close-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Vaysse K, Lagacherie P (2014) Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France). Geoderma Reg. doi:10.1016/j.geodrs.2014.11.003

    Google Scholar 

  • Veerecken H, Maes J, Feyen J, Darius P (1989) Estimating the soil moisture retention characteristics from texture, bulk density and carbon content. Soil Sci 148:389–403

    Article  Google Scholar 

  • Viscara Rosel RA, Walvoort DJJ, McBratney AB, Janik LJ, Skjemstad JO (2006) Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131:59–75

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wang L, Jia D, Shi H, Lin Q, Ge M, Xu Y (2006) Possibilities of multispectral data for the assessment of soil nitrogen content, pp 2994–2997. 0-7803-9510-7/06/$20.00 © 2006 IEEE

    Google Scholar 

  • Watson RT, Noble IR, Bolin B, Ravindramath NH, Verardo DJ, Dokken DJ (2000) Land use, land use change, and forestry. Cambridge University Press, Cambridge

    Google Scholar 

  • Webster R, Oliver MA (2007) Geostatistics for environmental scientists. Wiley, Chichester

    Book  Google Scholar 

  • Williams J, Ross PJ, Bristow KL (1992) Prediction of the Campbell water retention function from texture, structure and organic matter. In: van Genuchten MT, Leij FJ, Lund LJ (eds) Proceedings of the international workshop on indirect methods for estimating the hydraulic properties of unsaturated soils. University of California, Riverside, pp 427–441

    Google Scholar 

  • Wösten JHM, van Genuchten MT (1988) Using textures and other soil properties to predict the unsaturated soil hydraulic functions. Soil Sci Soc Am J 52:1762–1770

    Article  Google Scholar 

  • Wösten JHM, Schuren CHJE, Bouma J, Stein A (1990) Functional sensitivity analysis of four methods to generate soil hydraulic functions. Soil Sci Soc Am J 54(3):832–836

    Article  Google Scholar 

  • Wösten HM, Finke PA, Jansen MJW (1995) Comparison of class and continuous pedotransfer functions to generate soil hydraulic characteristics. Geoderma 66:227–237

    Article  Google Scholar 

  • Wösten JHM, Lilly A, Nemes A, Le Bas C (1999) Development and use of a database of hydraulic properties of European soils. Geoderma 90:169–185

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyabrata Santra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Santra, P., Kumar, M., Panwar, N.R., Das, B.S. (2017). Digital Soil Mapping and Best Management of Soil Resources: A Brief Discussion with Few Case Studies. In: Rakshit, A., Abhilash, P., Singh, H., Ghosh, S. (eds) Adaptive Soil Management : From Theory to Practices. Springer, Singapore. https://doi.org/10.1007/978-981-10-3638-5_1

Download citation

Publish with us

Policies and ethics