Ensemble of Different Parameter Adaptation Techniques in Differential Evolution

  • Liang Wang
  • Wenyin GongEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 682)


Differential evolution has been proved to be one of the most powerful evolutionary algorithms for the numerical optimization. However, the performance of differential evolution is significantly influenced by its parameter settings. To remedy this limitation, different parameter adaptation techniques are proposed in the literature. Generally, different parameter adaptation techniques have different rationales and may be suitable to different problems. Based on this consideration, in this paper, we attempt to develop the ensemble of different parameter adaptation techniques to enhance the performance of differential evolution. In our proposed method, different parameter adaptation techniques are combined together to adjust the parameters of different solutions in the population. As an illustration, two parameter adaptation techniques proposed in the literature are used in our proposed method. To verify the performance of our proposal, the functions proposed in CEC 2005 are chosen as the test suite. Experimental results indicate that, on the whole, our proposed method is able to provide better results than the single parameter adaptation based differential evolution variants with respect to the non-parametric statistical tests.


  1. 1.
    Bäck, T., Hammel, U., Schwefel, H.P.: Evolutionary computation: comments on the history and current state. IEEE Trans. Evol. Comput. 1(1), 3–17 (1997)CrossRefGoogle Scholar
  2. 2.
    Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)CrossRefGoogle Scholar
  4. 4.
    Gämperle, R., Müler, S., Koumoutsakos, P.: A parameter study for differential evolution. In: Proceedings of the WSEAS International Conference Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation, pp. 293–298 (2002)Google Scholar
  5. 5.
    Eiben, Á.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)CrossRefGoogle Scholar
  6. 6.
    Karafotias, G., Hoogendoorn, M., Eiben, A.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2015)CrossRefGoogle Scholar
  7. 7.
    Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)CrossRefGoogle Scholar
  8. 8.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)CrossRefGoogle Scholar
  9. 9.
    Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)CrossRefGoogle Scholar
  10. 10.
    Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential evolution. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 71–78 (2013)Google Scholar
  11. 11.
    Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC_2005 special session on real-parameter optimization (2005)Google Scholar
  12. 12.
    Brest, J., Zumer, V., Maucec, M.: Self-adaptive differential evolution algorithm in constrained real-parameter optimization. In: IEEE Congress on Evolutionary Computation, pp. 215–222 (2006)Google Scholar
  13. 13.
    Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 15(1), 55–66 (2011)CrossRefGoogle Scholar
  14. 14.
    Gong, W., Cai, Z.: Differential evolution with ranking-based mutation operators. IEEE Trans. Cybern. 43(6), 2066–2081 (2013)CrossRefGoogle Scholar
  15. 15.
    Alcalá-Fdez, J., Sánchez, L., García, S.: KEEL: a software tool to assess evolutionary algorithms to data mining problems. Soft Comput. 13, 307–318 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  1. 1.School of Computer ScienceChina University of GeosciencesWuhanPeople’s Republic of China

Personalised recommendations