Image Segmentation Using Membrane Computing: A Literature Survey

  • Rafaa I. Yahya
  • Siti Mariyam Shamsuddin
  • Salah I. YahyaEmail author
  • Shafatnnur Hasan
  • Bisan Al-Salibi
  • Ghada Al-Khafaji
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 681)


Membrane computing, a recent branch of natural computing, has been gaining momentum attention in the last few decades due to its massive parallelism and efficient computation. Many researchers in the field of membrane computing have proposed sophisticated techniques inspired by cell biology for computer science applications, especially when they considered cell organization in tissues, organs, and most recently, from the organization of neurons. The interdisciplinary applications of membrane computing include, but not limited to computer science, biology, biomedicine, bioinformatics and several other fields such as mathematics, artificial intelligence, automation, economics, to name but a few. Their applications are pertaining to computer graphics, approximate optimization, cryptography, parallel computing and image processing. Hence, in this paper we present an up to date comprehensive literature review pertaining to the application of membrane computing in the area of digital image analysis, especially image segmentation, comprehensively and systematically. We thoroughly investigate the recent advancement in the field of image segmentation using membrane system. Furthermore, we highlight the merits and demerits of various software tools and methods. Finally, we suggest some intuitive future directions in light of the current limitations.


Membrane computing Image segmentation Tissue-like P system P-Lingua 



This work is partially supported by The Malaysian Ministry of Higher Education under the fundamental research grant scheme (4F802 and 4F786). The authors would like to thank the Research Management Centre (RMC), Universiti Teknologi Malaysia (UTM) for their support in R&D.


  1. 1.
    Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000). doi: 10.1006/jcss.1999.1693 zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press Inc., New York (2010)zbMATHCrossRefGoogle Scholar
  3. 3.
    Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) Unconventional Moldels of Computation, pp. 289–301. Springer, Heidelberg (2012). doi: 10.1007/978-1-4471-0313-4_21 Google Scholar
  4. 4.
    Păun, G.: Introduction: membrane computing what it is and what it is not. In: Păun, G. (ed.) Membrane Computing, pp. 1–6. Springer, Heidelberg (2002). doi: 10.1007/978-3-642-56196-2_1 CrossRefGoogle Scholar
  5. 5.
    Alsalibi, B., Venkat, I., Subramanian, K., Lutfi, S.L., Wilde, P.D.: The impact of bio-inspired approaches toward the advancement of face recognition. ACM Comput. Surv. (CSUR). 48(1), 5 (2015). doi: 10.1145/2791121 CrossRefGoogle Scholar
  6. 6.
    Păun, G.: Membrane computing: power, efficiency, applications. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 396–407. Springer, Heidelberg (2005). doi: 10.1007/11494645_49 CrossRefGoogle Scholar
  7. 7.
    Păun, G.: Membrane computing: an introduction. Springer, Heidelberg (2002). doi: 10.1007/978-3-642-56196-2 zbMATHCrossRefGoogle Scholar
  8. 8.
    Yahya, R.I., Hasan, S., George, L.E., Alsalibi, B.: Membrane computing for 2D image segmentation. Int. J. Adv. Soft Comput. Appl. 7(1), 35–50 (2015)Google Scholar
  9. 9.
    Zhang, X., Jiang, Y., Pan, L.: Small universal spiking neural P systems with exhaustive use of rules. In: 3rd International Conference on Bio-Inspired Computing: Theories and Applications BICTA 2008, IEEE (2008). doi: 10.1109/BICTA.2008.4656713
  10. 10.
    Pan, L., Păun, G.: Spiking neural P systems: an improved normal form. Theor. Comput. Sci. 411(6), 906–918 (2010). doi: 10.1016/j.tcs.2009.11.010 zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Pan, L., Zeng, X.: Small universal spiking neural P systems working in exhaustive mode. IEEE Trans. Nanobiosci. 10(2), 99–105 (2011). doi: 10.1109/TNB.2011.2160281 CrossRefGoogle Scholar
  12. 12.
    Păun, A.: On P systems with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) Unconventional Models of Computation, UMC’2K, pp. 187–201. Springer, Heidelberg (2011). doi: 10.1007/978-1-4471-0313-4_15 Google Scholar
  13. 13.
    Niu, Y., Pan, L., Pereez-Jimenez, M.J., Font, M.R.: A tissue P systems based uniform solution to tripartite matching problem. Fundamenta Informaticae 109(2), 179–188 (2011). doi: 10.3233/FI-2011-503 zbMATHMathSciNetGoogle Scholar
  14. 14.
    Pan, L., Păun, G., Pereez-Jimenez, M.J.: Spiking neural P systems with neuron division and budding. Sci. China Inf. Sci. 54(8), 1596–1607 (2011). doi: 10.1007/s11432-011-4303-y zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Pan, L., Ishdorj, T.-O.: P systems with active membranes and separation rules. J. UCS. 10(5), 630–649 (2004). doi: 10.3217/jucs-010-05-0630 MathSciNetGoogle Scholar
  16. 16.
    Păun, G., Suzuki, Y., Tanaka, H., Yokomori, T.: On the power of membrane division in P systems. Theor. Comput. Sci. 324(1), 61–85 (2004). doi: 10.1016/j.tcs.2004.03.053 zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with active membranes: trading time for space. Nat. Comput. 10(1), 167–182 (2011). doi: 10.1007/s11047-010-9189-x. SpringerzbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Alhazov, A., Mart-Vide, C., Pan, L.: Solving graph problems by P systems with restricted elementary active membranes. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing, pp. 1–22. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24635-0_1 Google Scholar
  19. 19.
    Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Solving subset sum in linear time by using tissue p systems with cell division. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4527, pp. 170–179. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-73053-8_17 CrossRefGoogle Scholar
  20. 20.
    Díaz-Pernil, D., Gutirez-Naranjo, M.A., Pez-Jimez, M.J., Riscos-Nez, A.: A uniform family of tissue P systems with cell division solving 3-COL in a linear time. Theor. Comput. Sci. 404(1–2), 76–87 (2008). doi: 10.1016/j.tcs.2008.04.005 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Díaz-Pernil, D., Pereez-Jimenez, M.J., Riscos-Nez, A., Romero-Jimez, A.: Computational efficiency of cellular division in tissue-like membrane systems. Rom. J. Inf. Sci. Technol. 11(3), 229–241 (2008)Google Scholar
  22. 22.
    Păun, G.: P systems with active membranes: attacking NP-complete problems. J. Automata Lang. Comb. 6(1), 75–90 (2001)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Guerrero, G.D., Cecilia, J.M., Garc, J., Martinez-del-Amor, M., Pérez-Hurtado, I., Pérez-Jimenez, M.J.: Analysis of P systems simulation on CUDA. XX Jornadas de Paralelismo 2009, 289–294 (2009)Google Scholar
  24. 24.
    Cecilia, J.M., Garc, J.M., Guerrero, G.D., Martinez-del-Amor, M.A., Pérez-Hurtado, I., Pérez-Jimenez, M.J.: Simulation of P systems with active membranes on CUDA. Briefings Bioinform. 11(3), 313–322 (2010). doi: 10.1109/HiBi.2009.13 CrossRefGoogle Scholar
  25. 25.
    Cabarle, F.G., Adorna, H., Martínez-del-Amor, M.A., Pérez-Jiménez, M.J.: Spiking neural P system simulations on a high performance GPU platform. In: Xiang, Y., Cuzzocrea, A., Hobbs, M., Zhou, W. (eds.) ICA3PP 2011. LNCS, vol. 7017, pp. 99–108. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24669-2_10 CrossRefGoogle Scholar
  26. 26.
    Cabarle, F.G.C., Adorna, H., Martínez, M.A.: A spiking neural P system simulator based on CUDA. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 87–103. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28024-5_8 CrossRefGoogle Scholar
  27. 27.
    Cecilia, J.M., Garca, J.M., Guerrero, G.D., Martez-del-Amor, M.A.: The GPU on the simulation of cellular computing models. Soft Comput. 16(2), 231–246 (2012). doi: 10.1007/s00500-011-0716-1 CrossRefGoogle Scholar
  28. 28.
    Gelenbe, E.: Fundamental Concepts in Computer Science. Imperial College Press, London (2009)zbMATHCrossRefGoogle Scholar
  29. 29.
    Mart-Vide, C., Păun, G., Pazos, J., Rodruez-Pat, A.: Tissue P systems. Theor. Comput. Sci. 296(2), 295–326 (2003). doi: 10.1016/S0304-3975(02)00659-X zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta Informaticae 71(2), 279–308 (2006)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Ibarra, O.H., Păun, G.: Membrane computing: a general view. Ann. Eur. Acad. Sci., 83–101 (2006). EAS Publishing House, LiegeGoogle Scholar
  32. 32.
    Ceterchi, R., Gramatovici, R., Jonoska, N., Subramanian, K.: Tissue-like P systems with active membranes for picture generation. Fundamenta Informaticae 56(4), 311–328 (2002)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Chao, J., Nakayama, J.: Cubical singular simplex model for 3D objects and fast computation of homology groups. In: Proceedings of the 13th International Conference on Pattern Recognition. IEEE (1996). doi: 10.1109/ICPR.1996.547259
  34. 34.
    Ceterchi, R., Mutyam, M., Păun, G., Subramanian, K.: Array-rewriting P systems. Nat. Comput. 2(3), 229–249 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Peña-Cantillana, F., Díaz-Pernil, D., Berciano, A., Gutiérrez-Naranjo, M.A.: A parallel implementation of the thresholding problem by using tissue-like P systems. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011. LNCS, vol. 6855, pp. 277–284. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23678-5_32 CrossRefGoogle Scholar
  36. 36.
    Christinal, H.A., Dz-Pernil, D., Gutirez-Naranjo, M.A., Pez-Jimez, M.J.: Thresholding of 2D images with cell-like P systems. Rom. J. Inf. Sci. Technol. (ROMJIST) 13(2), 131–140 (2010)Google Scholar
  37. 37.
    Díaz-Pernil, D., Christinal, H.A., Gutirez-Naranjo, M.A., Real, P.: Using membrane computing for effective homology. Appl. Algebra Eng. Commun. Comput. 23(5–6), 233–249 (2012). doi: 10.1007/s00200-012-0176-6 zbMATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Alsalibi, B., Venkat, I., Subramanian, K., Christinal, H.: A bio-inspired software for homology groups of 2D digital images. In: Asian Conference on Membrane Computing (ACMC), 2014 IEEE (2014). doi: 10.1109/ACMC.2014.7065800
  39. 39.
    Ardelean, I., Díaz-Pernil, D., Gutirez-Naranjo, M.A., Pena-Cantillana, F., Reina-Molina, R., Sarchizian, I.: Counting cells with tissue-like P systems. In: Proceedings of the Tenth Brainstorming Week on Membrane Computing, vol. 1, p. 03 (2012)Google Scholar
  40. 40.
    Zhang, G., Gheorghe, M., Li, Y.: A membrane algorithm with quantum-inspired subalgorithms and its application to image processing. Nat. Comput. 11(4), 701–717 (2012). doi: 10.1007/s11047-012-9320-2 zbMATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Peña-Cantillana, F., Berciano, A., Díaz-Pernil, D., Gutiérrez-Naranjo, M.A.: Parallel skeletonizing of digital images by using cellular automata. In: Ferri, M., Frosini, P., Landi, C., Cerri, A., Fabio, B. (eds.) CTIC 2012. LNCS, vol. 7309, pp. 39–48. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30238-1_5 CrossRefGoogle Scholar
  42. 42.
    Díaz-Pernil, D., Pe-Cantillana, F., Gutirez-Naranjo, M.A.: A parallel algorithm for skeletonizing images by using spiking neural P systems. Neurocomputing 115, 81–91 (2013). doi: 10.1016/j.neucom.2012.12.032 CrossRefGoogle Scholar
  43. 43.
    Reina-Molina, R., Díaz-Pernil, D., Gutirez-Naranjo, M.A.: Cell complexes and membrane computing for thinning 2D and 3D images. In: Proceedings of the Tenth Brainstorming Week on Membrane Computing, vol. 2, p. 03 (2012)Google Scholar
  44. 44.
    Berciano, A., Christinal, H., Venkat, I., Subramanian, K.: First steps for a corner detection using membrane computing. In: Asian Conference on Membrane Computing (ACMC), 2014 IEEE (2014). doi: 10.1109/ACMC.2014.7065805
  45. 45.
    Freixenet, J., Muñoz, X., Raba, D., Martí, J., Cufí, X.: Yet another survey on image segmentation: region and boundary information integration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 408–422. Springer, Heidelberg (2002). doi: 10.1007/3-540-47977-5_27 CrossRefGoogle Scholar
  46. 46.
    Díaz-Pernil, D., Molina-Abril., H., Real, P., Gutirez-Naranjo, M.A.: A bio-inspired software for segmenting digital images. In: Bio-Inspired Computing: Theories and Applications (BIC-TA), 2010. IEEE (2010). doi: 10.1109/BICTA.2010.5645062
  47. 47.
    Păun, G.: Introduction to membrane computing. In: Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.) Applications of Membrane Computting, pp. 1–42. Springer, Heidelberg (2006)Google Scholar
  48. 48.
    Nguyen, V., Kearney, D., Gioiosa, G.: An implementation of membrane computing using reconfigurable hardware. Comput. Inform. 27(3+), 551–569 (2012)MathSciNetGoogle Scholar
  49. 49.
    Christinal, H.A., Díaz-Pernil, D., Jurado, P.R.: Segmentation in 2D and 3D image using tissue-like P system. In: Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 169–176. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-10268-4_20 CrossRefGoogle Scholar
  50. 50.
    Christinal, H.A., Díaz-Pernil, D., Real, P.: P systems and computational algebraic topology. Math. Comput. Modell. 52(11), 1982–1996 (2010). doi: 10.1016/j.mcm.2010.06.001 zbMATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    Reina-Molina, R., Carnero, J., Diaz-Pernil, D.: Image segmentation using tissue-like P systems with multiple auxiliary cells. Image-A 1(3), 143–150 (2010)Google Scholar
  52. 52.
    Carnero, J., Díaz-Pernil, D., Molina-Abril, H., Real, P.: Image segmentation inspired by cellular models using hardware programming. In: 3rd International Workshop on Computational Topology in Image Context (2010)Google Scholar
  53. 53.
    Christinal, H.A., Díaz-Pernil, D., Real, P.: Region-based segmentation of 2D and 3D images with tissue-like P systems. Pattern Recogn. Lett. 32(16), 2206–2212 (2011). doi: 10.1016/j.patrec.2011.05.004 CrossRefGoogle Scholar
  54. 54.
    Christinal, H.A., Díaz-Pernil, D., Jurado, P.R., Selvan, S.E.: Color segmentation of 2D images with thresholding. In: Mathew, J., Patra, P., Pradhan, D.K., Kuttyamma, A.J. (eds.) ICECCS 2012. CCIS, vol. 305, pp. 162–169. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32112-2_20 CrossRefGoogle Scholar
  55. 55.
    Isawasan, P., Venkat, I., Subramanian, K., Khader, A., Osman, O., Christinal, H.: Region-based segmentation of hexagonal digital images using membrane computing. In: 2014 Asian Conference on Membrane Computing (ACMC). IEEE (2014). doi: 10.1109/ACMC.2014.7065806
  56. 56.
    Yahya, R.I., Shamsuddin, S.M., Hasan, S., Yahya, S.I.: Tissue-like P system for segmentation of 2D hexagonal images. ARO- Sci. J. Koya Univ. 4(1), 35–42 (2016). doi: 10.14500/aro.10135 Google Scholar
  57. 57.
    Song, T., Pan, Z., Wong, D.M., Wang, X.: Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control. Inf. Sci. 372, 380–391 (2016)CrossRefGoogle Scholar
  58. 58.
    Díaz-Pernil, D., Gutirez-Naranjo, M.A., Molina-Abril, H., Real, P.: Designing a new software tool for digital imagery based on P systems. Nat. Comput. 11(3), 381–386 (2012). doi: 10.1007/s11047-011-9287-4 zbMATHMathSciNetCrossRefGoogle Scholar
  59. 59.
    Yang, Y., Peng, H., Jiang, Y., Huang, X., Zhang, J.: A region-based image segmentation method under P systems. J. Inf. Comput. Sci. 10(10), 2943–2950 (2013)CrossRefGoogle Scholar
  60. 60.
    Peng, H., Yang, Y., Zhang, J., Huang, X., Wang, J.: A region-based color image segmentation method based on P systems. Sci. Technol. 17(1), 63–75 (2014)Google Scholar
  61. 61.
    Carnero, J., Christinal, H.A., Díaz-Pernil, D., Reina-Molina, R., Subathra, M.S.P.: Improved parallelization of an image segmentation bio-inspired algorithm. In: Babu, B.V., Nagar, A., Deep, K., Pant, M., Bansal, J.C., Ray, K., Gupta, U. (eds.) SocProS 2012. AISC, vol. 236, pp. 75–82. Springer, Heidelberg (2014). doi: 10.1007/978-81-322-1602-5_9 Google Scholar
  62. 62.
    Christinal, H.A., Berciano, A., Díaz-Pernil, D., Gutiérrez-Naranjo, M.A.: Searching partially bounded regions with P systems. In: Pant, M., Deep, K., Nagar, A., Bansal, J.C. (eds.) SocProS 2013, Volume 1. AISC, vol. 258, pp. 45–54. Springer, Heidelberg (2014). doi: 10.1007/978-81-322-1771-8_5 CrossRefGoogle Scholar
  63. 63.
    El-Rewini, H., Abd-El-Barr, M.: Advanced Computer Architecture and Parallel Processing. Wiley, Hoboken (2005)Google Scholar
  64. 64.
    Kirk, D.B., Wen-mei, W.H.: Programming Massively Parallel Processors: A Hands-on Approach. Newnes, Oxford (2012)Google Scholar
  65. 65.
    Song, T., Liu, X., Zhao, Y., Zhang, X.: Spiking neural P systems with white hole neurons. IEEE Trans. Nanobiosci. (2016). doi: 10.1109/TNB.2016.2598879 Google Scholar
  66. 66.
    Hamadani, N.: Automatic target cueing in IR imagery. Master’s thesis, WPAFB, Ohio (1981)Google Scholar
  67. 67.
    Wang, X., Song, T., Gong, F., Pan, Z.: On the computational power of spiking neural P systems with self-organization, Sci. Rep. doi: 10.1038/srep.27624
  68. 68.
    Khalid, S., Tabȩdzki, M., Rybnik, M., Adamski, M.: K3M: a universal algorithm for image skeletonization and a review of thinning techniques. Int. J. Appl. Math. Comput. Sci. 20(2), 317–335 (2010)zbMATHGoogle Scholar
  69. 69.
    Ciobanu, G., Păun, G., Pereez-Jimenez, M.J.: Applications of Membrane Computing. Springer, Heidelberg (2006). doi: 10.1007/3-540-29937-8 Google Scholar
  70. 70.
    Zhang, G.-X., Liu, C.-X., Rong, H.-N.: Analyzing radar emitter signals with membrane algorithms. Math. Comput. Model. 52(11), 1997–2010 (2010). doi: 10.1016/j.mcm.2010.06.002 CrossRefGoogle Scholar
  71. 71.
    Nishida, T.Y.: An application of P system: a new algorithm for NP-complete optimization problems. In: Proceedings of the 8th World Multi-conference on Systems, Cybernetics and Informatics (2004)Google Scholar
  72. 72.
    Păun, G., Pereez-Jimenez, M.J.: Membrane computing: brief introduction, recent results and applications. Biosystems 85(1), 11–22 (2006). doi: 10.1016/j.biosystems.2006.02.001 CrossRefGoogle Scholar
  73. 73.
    Păun, G.: Tracing some open problems in membrane computing. Rom. J. Inf. Sci. Technol. 10(4), 303–314 (2007)Google Scholar
  74. 74.
    Zhang, G., Liu, C., Gheorghe, M., Ipate, F.: Solving satisfiability problems with membrane algorithms. In: Fourth International Conference on Bio-Inspired Computing, BIC-TA 2009. IEEE (2009). doi: 10.1109/BICTA.2009.5338159
  75. 75.
    Song, T., Pan, L.: Spiking neural P systems with request rules. Neurocomputing 193(12), 193–200 (2016)CrossRefGoogle Scholar
  76. 76.
    Peng, H., Wang, J., Pereez-Jimenez, M.J., Shi, P.: A novel image thresholding method based on membrane computing and fuzzy entropy. J. Intell. Fuzzy Syst. 24(2), 229–237 (2013). doi: 10.3233/IFS-2012-0549 Google Scholar
  77. 77.
    Peng, H., Shao, J., Li, B., Wang, J., Pereez-Jimenez, M.J., Jiang, Y., Yang, Y.: Image thresholding with cell-like P systems. In: Proceedings of the Tenth Brainstorming Week on Membrane Computing, vol. 2, p. 03 (2012)Google Scholar
  78. 78.
    Zhang, Z., Peng, H.: Object segmentation with membrane computing. J. Inf. Comput. Sci. 9(17), 5417–5424 (2012)Google Scholar
  79. 79.
    Peng, H., Wang, J., Pereez-Jimenez, M.J.: Optimal multi-level thresholding with membrane computing. Digit. Sig. Process. 37, 53–64 (2015). doi: 10.1016/j.dsp.2014.10.006 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2016

Authors and Affiliations

  • Rafaa I. Yahya
    • 1
    • 2
    • 3
  • Siti Mariyam Shamsuddin
    • 1
    • 3
  • Salah I. Yahya
    • 3
    • 4
    Email author
  • Shafatnnur Hasan
    • 1
    • 3
  • Bisan Al-Salibi
    • 3
    • 5
  • Ghada Al-Khafaji
    • 3
    • 6
  1. 1.Faculty of ComputingUniversiti Teknologi MalaysiaUTM SkudaiMalaysia
  2. 2.Department of Computer, College of ScienceUniversity of Al-MustansiriyahBaghdadIraq
  3. 3.UTM Big Data Center, Ibnu Sina Institute for Scientific and Industrial ResearchUniversiti Teknologi MalaysiaUTM SkudaiMalaysia
  4. 4.Department of Software EngineeringKoya UniversityKurdistan RegionIraq
  5. 5.School of Computer SciencesUniversiti Sains Malaysia, USMGelugorMalaysia
  6. 6.Department of Computer Science, College of ScienceBaghdad UniversityBaghdadIraq

Personalised recommendations