Biodiversity Mining Through Transcriptome Analysis



Secondary metabolites or chemical constituents of plants are functional products synthesized through more complex multienzymatic secondary metabolite pathways. The release of few secondary metabolites is related to the exertion of morphological differentiation and maturation during plant development. Secondary metabolite compounds designate huge chemical diversity, i.e., each plant possesses its own complex diverse set of metabolites. This diversity imparts analytical challenges, characterization of a number of metabolites in parallel, and quantification of particular compound of interest. These compounds itself are related to significant plant traits (color and fragrance of flowers, taste and color of food, and resistance toward pests and pathogens) and also for the synthesis of fine chemicals such as medicines (anticancer, anti-inflammatory, antioxidants, etc.), flavors, fragrances, dyes, insecticides, pheromones, and antimicrobial agents. The emergence of cost-effective high throughput sequencing or next-generation sequencing (NGS) technology quickly expanded transcriptome information of several plant species, which could be analyzed for quick identification of previously unknown genes and enzymes and elucidation of biosynthetic pathways. The present chapter details diverse secondary metabolites, gene expression patterns, molecular basis of chemical diversity of the compounds, and application of NGS based transcriptome profiling for biosynthetic pathway elucidation.


Transcriptome Metabolomics Phytochemicals Gene sequencing Biomolecules Biodiversity mining 


  1. Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, Rosenthal PJ, D’Alessandro U (2011) Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J 10:1CrossRefGoogle Scholar
  2. Adnyana IK, Sukandar EY, Setiawan F, Christanti Y (2013) Efficacy and safety O-desmethyl Quinine Compare to Quinine for Nocturnal Leg Cramp. J Med Sci 13:819CrossRefGoogle Scholar
  3. Agyapong VIO, Singh K, Savage M, Thekiso TB, Finn M, Farren CK, McLoughlin DM (2013) Use of codeine-containing medicines by Irish psychiatric inpatients before and after regulatory limitations on their supply. Ir J Psychol Med 30:7–12CrossRefGoogle Scholar
  4. Aharoni A, De Vos CH, Wein M, Sun Z, Greco R, Kroon A, Mol JNM, O’Connell AP (2001) The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J 28:319–332PubMedCrossRefGoogle Scholar
  5. Allen RS, Millgate AG, Chitty JA, Thisleton J, Miller JAC, Fist AJ, Gerlach WL, Larkin PJ (2004) RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nat Biotechnol 22:1559–1566PubMedCrossRefGoogle Scholar
  6. Allen RS, Miller JAC, Chitty JA, Fist AJ, Gerlach WL, Larkin PJ (2008) Metabolic engineering of morphinan alkaloids by over-expression and RNAi suppression of salutaridinol 7-O-acetyltransferase in opium poppy. Plant Biotechnol J 6:22–30PubMedGoogle Scholar
  7. Alves MN, Sartoratto A, Trigo JR (2007) Scopolamine in Brugmansia suaveolens (Solanaceae): defense, allocation, costs, and induced response. J Chem Ecol 33:297–309PubMedCrossRefGoogle Scholar
  8. Annadurai RS, Neethiraj R, Jayakumar V, Damodaran AC, Rao SN, Katta MA, Gopinathan S, Sarma SP, Senthilkumar V, Niranjan V (2013) De Novo transcriptome assembly (NGS) of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids. PLoS One 8:e56217PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ap Rees T (1995) Prospects of manipulating plant metabolism. Trends Biotechnol 13:375–378CrossRefGoogle Scholar
  10. Asif MH, Lakhwani D, Pathak S, Gupta P, Bag SK, Nath P, Trivedi PK (2014) Transcriptome analysis of ripe and unripe fruit tissue of banana identifies major metabolic networks involved in fruit ripening process. BMC Plant Biol 14:1CrossRefGoogle Scholar
  11. Athanasiadou S, Kyriazakis I, Jackson F, Coop RL (2001) Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep: in vitro and in vivo studies. Vet Parasitol 99:205–219PubMedCrossRefGoogle Scholar
  12. Bak S, Olsen CE, Petersen BL, Møller BL, Halkier BA (1999) Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor. Plant J 20:663–671PubMedCrossRefGoogle Scholar
  13. Barrero RA, Chapman B, Yang Y, Moolhuijzen P, Keeble-Gagnère G, Zhang N, Tang Q, Bellgard MI, Qiu D (2011) De novo assembly of Euphorbia fischeriana root transcriptome identifies prostratin pathway related genes. BMC Genomics 12:1CrossRefGoogle Scholar
  14. Barry TN, McNabb WC (1999) The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br J Nutr 81:263–272PubMedGoogle Scholar
  15. Baser KHC, Buchbauer G (2015) Handbook of essential oils: science, technology, and applications. CRC Press, Boca RatonGoogle Scholar
  16. Becker JVW, Armstrong GO, van der Merwe MJ, Lambrechts MG, Vivier MA, Pretorius IS (2003) Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res 4:79–85PubMedCrossRefGoogle Scholar
  17. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bernáth J, Fuleky G (2009) Aromatic plants. Cultivated Plants, Primarily as Food Sources 2:329–352Google Scholar
  19. Böhme K, Barros-Velázquez J, Calo-Mata P, Aubourg SP (2014) Antibacterial, antiviral and antifungal activity of essential oils: mechanisms and applications. In: Antimicrobial compounds. Springer, Heidelberg, pp 51–81Google Scholar
  20. Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2393PubMedPubMedCentralCrossRefGoogle Scholar
  21. Borgio JF (2009) RNA interference (RNAi) technology: a promising tool for medicinal plant research. J Med Plant Res 3:1176–1183Google Scholar
  22. Brinkhaus B, Lindner M, Schuppan D, Hahn EG (2000) Chemical, pharmacological and clinical profile of the East Asian medical plant Centella asiatica. Phytomedicine 7:427–448PubMedCrossRefGoogle Scholar
  23. Brossi A, Venugopalan B, Dominguez Gerpe L, Yeh HJC, Flippen-Anderson JL, Buchs P, Luo XD, Milhous W, Peters W (1988) Arteether, a new antimalarial drug: synthesis and antimalarial properties. J Med Chem 31:645–650PubMedCrossRefGoogle Scholar
  24. Canel C, Lopes-Cardoso MI, Whitmer S, van der Fits L, Pasquali G, van der Heijden R, Hoge JHC, Verpoorte R (1998) Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205:414–419PubMedCrossRefGoogle Scholar
  25. Carpentier SC, Panis B, Vertommen A, Swennen R, Sergeant K, Renaut J, Laukens K, Witters E, Samyn B, Devreese B (2008) Proteome analysis of non-model plants: A challenging but powerful approach. Mass Spectrom Rev 27:354–377PubMedCrossRefGoogle Scholar
  26. Chaichisemsari M, Maherisis N, Sadaghian M, Eshratkhah B, Hassanpour S (2011) Effects of administration of industrial tannins on nutrient excretion parameters during naturally acquired mixed nematode infections in Moghani sheep. J Am Sci 7:245–248Google Scholar
  27. Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Müller WEG, Wetter T, Suhai S (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14:1147–1159PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chiari Y, Cahais V, Galtier N, Delsuc F (2012) Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol 10:1–15. doi: 10.1186/1741-7007-10-65 CrossRefGoogle Scholar
  29. Chintapakorn Y, Hamill JD (2003) Antisense-mediated down-regulation of putrescine N-methyltransferase activity in transgenic Nicotiana tabacum L. can lead to elevated levels of anatabine at the expense of nicotine. Plant Mol Biol 53:87–105PubMedCrossRefGoogle Scholar
  30. Chu Y, Corey DR (2012) RNA sequencing: platform selection, experimental design, and data interpretation. Nucleic Acid Ther 22:271–274PubMedPubMedCentralGoogle Scholar
  31. Chung S-M, Vaidya M, Tzfira T (2006) Agrobacterium is not alone: gene transfer to plants by viruses and other bacteria. Trends Plant Sci 11:1–4PubMedCrossRefGoogle Scholar
  32. Clarke PB, Fu DS, Jakubovic A, Fibiger HC (1988) Evidence that mesolimbic dopaminergic activation underlies the locomotor stimulant action of nicotine in rats. J Pharmacol Exp Ther 246:701–708PubMedGoogle Scholar
  33. Claros MG, Bautista R, Guerrero-Fernández D, Benzerki H, Seoane P, Fernández-Pozo N (2012) Why assembling plant genome sequences is so challenging. Biology (Basel) 1:439–459.Google Scholar
  34. Clifford M, Leah M, Charles N (2012) Antiepileptic properties of Quinine: A systematic review. Annu Rev Neurosci 19:14Google Scholar
  35. Cline SD, Coscia CJ (1988) Stimulation of sanguinarine production by combined fungal elicitation and hormonal deprivation in cell suspension cultures of Papaver bracteatum. Plant Physiol 86:161–165PubMedPubMedCentralCrossRefGoogle Scholar
  36. Courtois D, Guern J (1980) Temperature response of Catharanthus roseus cells cultivated in liquid medium. Plant Sci Lett 17:473–482CrossRefGoogle Scholar
  37. Crowell PL (1999) Prevention and therapy of cancer by dietary monoterpenes. J Nutr 129:775S–778SPubMedGoogle Scholar
  38. Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356PubMedCrossRefGoogle Scholar
  39. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352PubMedCrossRefGoogle Scholar
  40. Davuluri GR, Van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895PubMedCrossRefGoogle Scholar
  41. Degen AA, Becker K, Makkar HPS, Borowy N (1995) Acacia saligna as a fodder tree for desert livestock and the interaction of its tannins with fibre fractions. J Sci Food Agric 68:65–71CrossRefGoogle Scholar
  42. Dexter R, Qualley A, Kish CM, Ma CJ, Koeduka T, Nagegowda DA, Dudareva N, Pichersky E, Clark D (2007) Characterization of a petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol. Plant J 49:265–275PubMedCrossRefGoogle Scholar
  43. Díaz-Sala C, Cervera T (2011) Promoting a functional and comparative understanding of the conifer genome-implementing applied aspects for more productive and adapted forests (ProCoGen). In: BMC proceedings. BioMed Central Ltd, p P158Google Scholar
  44. Diray-Arce J, Clement M, Gul B, Khan MA, Nielsen BL (2015) Transcriptome assembly, profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance. BMC Genomics 16:1CrossRefGoogle Scholar
  45. Dixon RA (1999) Plant natural products: the molecular genetic basis of biosynthetic diversity. Curr Opin Biotechnol 10:192–197PubMedCrossRefGoogle Scholar
  46. Dixon RA, Arntzen CJ (1997) Transgenic plant technology is entering the era of metabolic engineering. Trends Biotechnol 15:441–444CrossRefGoogle Scholar
  47. Dixon RA, Dey PM, Lamb CJ (1983) Phytoalexins: enzymology and molecular biology. Adv Enzymol Relat Areas Mol Biol 55:1–136PubMedGoogle Scholar
  48. Duan J, Xia C, Zhao G, Jia J, Kong X (2012) Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data. BMC Genomics 13:1CrossRefGoogle Scholar
  49. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(80):133–138PubMedCrossRefGoogle Scholar
  50. Eilert U, Constabel F, Kurz WGW (1986) Elicitor-stimulation of monoterpene indole alkaloid formation in suspension cultures of Catharanthus roseus. J Plant Physiol 126:11–22CrossRefGoogle Scholar
  51. Eilert U, De Luca V, Constabel F, Kurz WGW (1987) Elicitor-mediated induction of tryptophan decarboxylase and strictosidine synthase activities in cell suspension cultures of Catharanthus roseus. Arch Biochem Biophys 254:491–497PubMedCrossRefGoogle Scholar
  52. Elmer KR, Fan S, Gunter HM, Jones JC, Boekhoff S, Kuraku S, Meyer A (2010) Rapid evolution and selection inferred from the transcriptomes of sympatric crater lake cichlid fishes. Mol Ecol 19:197–211PubMedCrossRefGoogle Scholar
  53. El-Tawil S, Al Musa T, Valli H, Lunn M, Brassington R, El-Tawil T, Weber M (2010) Quinine for muscle cramps. Cochrane Database Syst Rev 4:CD005044Google Scholar
  54. Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8:380–386PubMedCrossRefGoogle Scholar
  55. Estévez JM, Cantero A, Reindl A, Reichler S, León P (2001) 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 276:22901–22909PubMedCrossRefGoogle Scholar
  56. Eudes A, Liang Y, Mitra P, Loqué D (2014) Lignin bioengineering. Curr Opin Biotechnol 26:189–198PubMedCrossRefGoogle Scholar
  57. Evans DA, Mitch CH (1982) Studies directed towards the total synthesis of morphine alkaloids. Tetrahedron Lett 23:285–288CrossRefGoogle Scholar
  58. Fabricant DS, Farnsworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 109:69–75PubMedPubMedCentralCrossRefGoogle Scholar
  59. Facchini PJ, Bohlmann J, Covello PS, De Luca V, Mahadevan R, Page JE, Ro D-K, Sensen CW, Storms R, Martin VJJ (2012) Synthetic biosystems for the production of high-value plant metabolites. Trends Biotechnol 30:127–131PubMedCrossRefGoogle Scholar
  60. Fernández SP, Wasowski C, Loscalzo LM, Granger RE, Johnston GAR, Paladini AC, Marder M (2006) Central nervous system depressant action of flavonoid glycosides. Eur J Pharmacol 539:168–176PubMedCrossRefGoogle Scholar
  61. Frick S, Chitty JA, Kramell R, Schmidt J, Allen RS, Larkin PJ, Kutchan TM (2004) Transformation of opium poppy (Papaver somniferum L.) with antisense berberine bridge enzyme gene (anti-bbe) via somatic embryogenesis results in an altered ratio of alkaloids in latex but not in roots. Transgenic Res 13:607–613PubMedCrossRefGoogle Scholar
  62. Fujii N, Inui T, Iwasa K, Morishige T, Sato F (2007) Knockdown of berberine bridge enzyme by RNAi accumulates (S)-reticuline and activates a silent pathway in cultured California poppy cells. Transgenic Res 16:363–375PubMedCrossRefGoogle Scholar
  63. Galvano F, La Fauci L, Lazzarino G, Fogliano V, Ritieni A, Ciappellano S, Battistini NC, Tavazzi B, Galvano G (2004) Cyanidins: metabolism and biological properties. J Nutr Biochem 15:2–11PubMedCrossRefGoogle Scholar
  64. Gandikota M, de Kochko A, Chen L, Ithal N, Fauquet C, Reddy AR (2001) Development of transgenic rice plants expressing maize anthocyanin genes and increased blast resistance. Mol Breed 7:73–83CrossRefGoogle Scholar
  65. Garcia-Seco D, Zhang Y, Gutierrez-Mañero FJ, Martin C, Ramos-Solano B (2015) RNA-Seq analysis and transcriptome assembly for blackberry (Rubus sp. Var. Lochness) fruit. BMC Genomics 16:5PubMedPubMedCentralCrossRefGoogle Scholar
  66. Gaudinier A, Tang M, Kliebenstein DJ (2015) Transcriptional networks governing plant metabolism. Current Plant Biology 3:56–64CrossRefGoogle Scholar
  67. Gayral P, Melo-Ferreira J, Glemin S, Bierne N, Carneiro M, Nabholz B, Lourenco JM, Alves PC, Ballenghien M, Faivre N, Belkhir K, Cahais V, Loire E, Bernard A, Galtier N (2013) Reference-Free Population Genomics from Next-Generation Transcriptome Data and the Vertebrate-Invertebrate Gap. PLoS Genet 9:e1003457PubMedPubMedCentralCrossRefGoogle Scholar
  68. Ghasemzadeh A, Jaafar HZE (2011) Effect of CO2 enrichment on synthesis of some primary and secondary metabolites in ginger (Zingiber officinale Roscoe). Int J Mol Sci 12:1101–1114PubMedPubMedCentralCrossRefGoogle Scholar
  69. Giannini C, Debitus C, Lucas R, Ubeda A, Payá M, Hooper JNA, D’Auria MV (2001) New sesquiterpene derivatives from the sponge Dysidea species with a selective inhibitor profile against human phospholipase A2 and other leukocyte functions. J Nat Prod 64:612–615PubMedCrossRefGoogle Scholar
  70. Gilles A, Meglécz E, Pech N, Ferreira S, Malausa T, Martin J-F (2011) Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics 12:245PubMedPubMedCentralCrossRefGoogle Scholar
  71. Giulietti AM, Ertola RJ (1997) Biotechnological strategies for production of plants and secondary metabolites of pharmaceutical interest. In: II WOCMAP congress medicinal and aromatic plants, Part 3: Agricultural production. Post Harvest Techniques, Biotechnology 502, pp 269–280Google Scholar
  72. Gläßgen WE, Wray V, Strack D, Metzger JW, Seitz HU (1992) Anthocyanins from cell suspension cultures of Daucus carota. Phytochemistry 31:1593–1601PubMedCrossRefGoogle Scholar
  73. Goddijn OJM, Pen J (1995) Plants as bioreactors. Trends Biotechnol 13:379–387CrossRefGoogle Scholar
  74. Gogas H, Fountzilas G (2003) The role of taxanes as a component of neoadjuvant chemotherapy for breast cancer. Ann Oncol 14:667–674PubMedCrossRefGoogle Scholar
  75. Grotewold E, Chamberlin M, Snook M, Siame B, Butler L, Swenson J, Maddock S, Clair GS, Bowen B (1998) Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 10:721–740PubMedPubMedCentralGoogle Scholar
  76. Gu L, Li N, Gong J, Li Q, Zhu W, Li J (2011) Berberine ameliorates intestinal epithelial tight-junction damage and down-regulates myosin light chain kinase pathways in a mouse model of endotoxinemia. J Infect Dis 203:1602–1612PubMedCrossRefGoogle Scholar
  77. Guçlu-Ustundag O, Mazza G (2007) Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 47:231–258PubMedCrossRefGoogle Scholar
  78. Gundlach H, Müller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci 89:2389–2393PubMedPubMedCentralCrossRefGoogle Scholar
  79. Guo Q, Ma X, Wei S, Qiu D, Wilson IW, Wu P, Tang Q, Liu L, Dong S, Zu W (2014) De novo transcriptome sequencing and digital gene expression analysis predict biosynthetic pathway of rhynchophylline and isorhynchophylline from Uncaria rhynchophylla, a non-model plant with potent anti-alzheimer’s properties. BMC Genomics 15:676PubMedPubMedCentralCrossRefGoogle Scholar
  80. Gupta P, Goel R, Pathak S, Srivastava A, Singh SP, Sangwan RS, Asif MH, Trivedi PK (2013) De novo assembly, functional annotation and comparative analysis of Withania somnifera leaf and root transcriptomes to identify putative genes involved in the withanolides biosynthesis. PLoS One 8:e62714PubMedPubMedCentralCrossRefGoogle Scholar
  81. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512PubMedCrossRefGoogle Scholar
  82. Hagimori M, Matsumoto T, Obi Y (1982) Studies on the production of Digitalis cardenolides by plant tissue culture III. Effects of nutrients on digitoxin formation by shoot-forming cultures of Digitalis purpurea L. grown in liquid media. Plant Cell Physiol 23:1205–1211CrossRefGoogle Scholar
  83. Hajek P, McRobbie H, Myers K (2013) Efficacy of cytisine in helping smokers quit: systematic review and meta-analysis. Thorax 68:1037–1042PubMedCrossRefGoogle Scholar
  84. Han JY, Kwon YS, Yang DC, Jung YR, Choi YE (2006) Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng. Plant Cell Physiol 47:1653–1662PubMedCrossRefGoogle Scholar
  85. Hara Y, Luo SJ, Wickremasinghe RL, Yamanishi T (1995) Special issue on tea. Food Rev Intl 11:371–542CrossRefGoogle Scholar
  86. Harrewijn P, van Oosten AM, Piron PGM (2001) Natural Terpenoids as Messengers: a multidisciplinary study of their production, biological functions, and practical applications. Kluwer Academic Press, Dordrecht, p 440Google Scholar
  87. Hartmann T (1991) Alkaloids In herbivores; their interaction with secondary plant metabolites. In: Rosenthaland GA, Berenbaum MR (ed) The chemical participants, vol I, edn 2. Academic Press, San DiegoGoogle Scholar
  88. Hassanpour S, Sadaghian M, MaheriSis N, Eshratkhah B, ChaichiSemsari M (2011) Effect of condensed tannin on controlling faecal protein excretion in nematode-infected sheep: in vivo study. J Am Sci 7:896–900Google Scholar
  89. He C, Cui K, Zhang J, Duan A, Zeng Y (2013) Next-generation sequencing-based mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of developing culms in Moso bamboo. BMC Plant Biol 13:119PubMedPubMedCentralCrossRefGoogle Scholar
  90. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584PubMedCrossRefGoogle Scholar
  91. Heinstein PF (1985) Future approaches to the formation of secondary natural products in plant cell suspension cultures. J Nat Prod 48:1–9CrossRefGoogle Scholar
  92. Herbers K, Sonnewald U (1999) Production of new/modified proteins in transgenic plants. Curr Opin Biotechnol 10:163–168PubMedCrossRefGoogle Scholar
  93. Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Biol 50:473–503CrossRefGoogle Scholar
  94. Hertog MGL, Hollman PCH, Katan MB (1992) Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J Agric Food Chem 40:2379–2383CrossRefGoogle Scholar
  95. Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P, Vogel J, Stadler PF, Hackermüller J (2009) Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput Biol 5:e1000502PubMedPubMedCentralCrossRefGoogle Scholar
  96. Hollman PH, Katan MB (1999) Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol 37:937–942PubMedCrossRefGoogle Scholar
  97. Hostettmann K, Marston A (2005) Saponins. Cambridge University Press, CambridgeGoogle Scholar
  98. Huang M, Lu J-J, Huang M-Q, Bao J-L, Chen X-P, Wang Y-T (2012) Terpenoids: natural products for cancer therapy. Expert Opin Investig Drugs 21:1801–1818PubMedCrossRefGoogle Scholar
  99. Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80:225–236PubMedCrossRefGoogle Scholar
  100. Hwang EI, Kaneko M, Ohnishi Y, Horinouchi S (2003) Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Appl Environ Microbiol 69:2699–2706PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ibarra-Laclette E, Méndez-Bravo A, Pérez-Torres CA, Albert VA, Mockaitis K, Kilaru A, López-Gómez R, Cervantes-Luevano JI, Herrera-Estrella L (2015) Deep sequencing of the Mexican avocado transcriptome, an ancient angiosperm with a high content of fatty acids. BMC Genomics 16:599PubMedPubMedCentralCrossRefGoogle Scholar
  102. Ikeda T, Matsumoto T, Noguchi M (1977) Effects of inorganic nitrogen sources and physical factors on the formation of ubiquinone by tobacco plant cells in suspension culture. Agric Biol Chem 41:1197–1201Google Scholar
  103. Imelfort M, Edwards D (2009) De novo sequencing of plant genomes using second-generation technologies. Brief Bioinform 10:609–618PubMedCrossRefGoogle Scholar
  104. Inui T, Tamura K, Fujii N, Morishige T, Sato F (2007) Over expression of Coptis japonica norcoclaurine 6-O-methyltransferase overcomes the rate-limiting step in benzylisoquinoline alkaloid biosynthesis in cultured Eschscholzia californica. Plant Cell Physiol 48:252–262PubMedCrossRefGoogle Scholar
  105. Ito H, Miyake M, Nishitani E, Mori K, Hatano T, Okuda T, Konoshima T, Takasaki M, Kozuka M, Mukainaka T (1999) Anti-tumor promoting activity of polyphenols from Cowania mexicana and Coleogyne ramosissima. Cancer Lett 143:5–13PubMedCrossRefGoogle Scholar
  106. James JT, Dubery IA (2009) Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) Urban. Molecules 14:3922–3941PubMedCrossRefGoogle Scholar
  107. Jayakodi M, Lee S-C, Park H-S, Jang W, Lee YS, Choi B-S, Nah GJ, Kim D-S, Natesan S, Sun C (2014) Transcriptome profiling and comparative analysis of Panax ginseng adventitious roots. J Ginseng Res 38:278–288PubMedPubMedCentralCrossRefGoogle Scholar
  108. Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J 19:6150–6161PubMedPubMedCentralCrossRefGoogle Scholar
  109. Johnson MTJ, Carpenter EJ, Tian Z, Bruskiewich R, Burris JN, Carrigan CT, Chase MW, Clarke ND, Covshoff S, Depamphilis CW, Edger PP, Goh F, Graham S, Greiner S, Hibberd JM, Jordon-Thaden I, Kutchan TM, Leebens-Mack J, Melkonian M, Miles N, Myburg H, Patterson J, Pires JC, Ralph P, Rolf M, Sage RF, Soltis D, Soltis P, Stevenson D, Stewart CNJ, Surek B, Thomsen CJM, Villarreal JC, Wu X, Zhang Y, Deyholos MK, Wong GK-S (2012) Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes. PLoS One 7:e50226PubMedPubMedCentralCrossRefGoogle Scholar
  110. Jung HG, Fahey GC (1983) Nutritional implications of phenolic monomers and lignin: a review. J Anim Sci 57:206–219CrossRefGoogle Scholar
  111. Kabera JN, Semana E, Mussa AR, He X (2014) Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol 2:377–392Google Scholar
  112. Kaminaga Y, Schnepp J, Peel G, Kish CM, Ben-Nissan G, Weiss D, Orlova I, Lavie O, Rhodes D, Wood K (2006) Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J Biol Chem 281:23357–23366PubMedCrossRefGoogle Scholar
  113. Karppinen K, Hohtola A (2008) Molecular cloning and tissue-specific expression of two cDNAs encoding polyketide synthases from Hypericum perforatum. J Plant Physiol 165:1079–1086PubMedCrossRefGoogle Scholar
  114. Karppinen K, Hokkanen J, Mattila S, Neubauer P, Hohtola A (2008) Octaketide-producing type III polyketide synthase from Hypericum perforatum is expressed in dark glands accumulating hypericins. Feder Eur Biochem Soc J 275:4329–4342Google Scholar
  115. Kempe K, Higashi Y, Frick S, Sabarna K, Kutchan TM (2009) RNAi suppression of the morphine biosynthetic gene salAT and evidence of association of pathway enzymes. Phytochemistry 70:579–589PubMedCrossRefGoogle Scholar
  116. Kenny OM, McCarthy CM, Brunton NP, Hossain MB, Rai DK, Collins SG, Jones PW, Maguire AR, O’Brien NM (2013) Anti-inflammatory properties of potato glycoalkaloids in stimulated Jurkat and Raw 264.7 mouse macrophages. Life Sci 92:775–782PubMedCrossRefGoogle Scholar
  117. Kim JB, Yu J-H, Ko E, Lee K-W, Song AK, Park SY, Shin I, Han W, Noh DY (2010) The alkaloid Berberine inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell cycle arrest. Phytomedicine 17:436–440PubMedCrossRefGoogle Scholar
  118. Kim SM, Kang K, Jho EH, Jung Y, Nho CW, Um B, Pan C (2011) Hepatoprotective effect of flavonoid glycosides from Lespedeza cuneata against oxidative stress induced by tert-butyl hyperoxide. Phytother Res 25:1011–1017PubMedCrossRefGoogle Scholar
  119. Kishore GM, Somerville CR (1993) Genetic engineering of commercially useful biosynthetic pathways in transgenic plants. Curr Opin Biotechnol 4:152–158PubMedCrossRefGoogle Scholar
  120. Kitic D, Pavlovic D, Brankovic S (2013) The role of essential oils and the biological detoxification in the prevention of aflatoxin borne diseases. Curr Top Med Chem 13:2767–2790PubMedCrossRefGoogle Scholar
  121. Kreft S, Knapp M, Kreft I (1999) Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. J Agric Food Chem 47:4649–4652PubMedCrossRefGoogle Scholar
  122. Kreis W, Reinhard E (1992) 12β-Hydroxylation of digitoxin by suspension-cultured Digitalis lanata cells: Production of digoxin in 20-litre and 300-litre air-lift bioreactors. J Biotechnol 26:257–273PubMedCrossRefGoogle Scholar
  123. Kumar PA (2001) Plant biotechnology: Future perspectives (Review Paper). Def Sci J 51:353CrossRefGoogle Scholar
  124. Kumar R, Khurana A (2014) Functional genomics of tomato: Opportunities and challenges in post-genome NGS era. J Biosci 39:917–929PubMedCrossRefGoogle Scholar
  125. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:1–16Google Scholar
  126. Künstner A, Wolf JBW, Backström N, Whitney O, Balakrishnan CN, Day L, Edwards SV, Janes DE, Schlinger BA, Wilson RK (2010) Comparative genomics based on massive parallel transcriptome sequencing reveals patterns of substitution and selection across 10 bird species. Mol Ecol 19:266–276PubMedPubMedCentralCrossRefGoogle Scholar
  127. Lam S, Lam B, Harrison L, Strobel G (1984) Genetic information on the Ri plasmid of Agrobacterium rhizogenes determines host specificity. Plant Sci Lett 34:345–352CrossRefGoogle Scholar
  128. Larkin PJ, Miller JAC, Allen RS, Chitty JA, Gerlach WL, Frick S, Kutchan TM, Fist AJ (2007) Increasing morphinan alkaloid production by over-expressing codeinone reductase in transgenic Papaver somniferum. Plant Biotechnol J 5:26–37PubMedCrossRefGoogle Scholar
  129. Lecourieux D, Mazars C, Pauly N, Ranjeva R, Pugin A (2002) Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell 14:2627–2641PubMedPubMedCentralCrossRefGoogle Scholar
  130. Lee K-T, Yamakawa T, Kodama T, Shimomura K (1998) Effects of chemicals on alkaloid production by transformed roots of belladonna. Phytochemistry 49:2343–2347CrossRefGoogle Scholar
  131. Leisso RS, Buchanan DA, Lee J, Mattheis JP, Sater C, Hanrahan I, Watkins CB, Gapper N, Johnston JW, Schaffer RJ (2015) Chilling-related cell damage of apple (Malus× domestica Borkh.) fruit cortical tissue impacts antioxidant, lipid and phenolic metabolism. Physiol Plant 153:204–220PubMedCrossRefGoogle Scholar
  132. Lessard PA, Kulaveerasingam H, York GM, Strong A, Sinskey AJ (2002) Manipulating gene expression for the metabolic engineering of plants. Metab Eng 4:67–79PubMedCrossRefGoogle Scholar
  133. Li C, Zhu Y, Guo X, Sun C, Luo H, Song J, Li Y, Wang L, Qian J, Chen S (2013) Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng CA Meyer. BMC Genomics 14:1CrossRefGoogle Scholar
  134. Li X, Weng J, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581PubMedCrossRefGoogle Scholar
  135. Li Y, Luo H-M, Sun C, Song J-Y, Sun Y-Z, Wu Q, Wang N, Yao H, Steinmetz A, Chen S-L (2010) EST analysis reveals putative genes involved in glycyrrhizin biosynthesis. BMC Genomics 11:268PubMedPubMedCentralCrossRefGoogle Scholar
  136. Lopez M, Martınez F, Del Valle C, Orte C, Miro M (2001) Analysis of phenolic constituents of biological interest in red wines by high-performance liquid chromatography. J Chromatogr A 922:359–363PubMedCrossRefGoogle Scholar
  137. Lu M-K, Shih Y-W, Chang Chien T-T, Fang L-H, Huang H-C, Chen P-S (2010) ALPHA.-Solanine Inhibits Human Melanoma Cell Migration and Invasion by Reducing Matrix Metalloproteinase-2/9 Activities. Biol Pharm Bull 33:1685–1691PubMedCrossRefGoogle Scholar
  138. Luo H, Sun C, Sun Y, Wu Q, Li Y, Song J, Niu Y, Cheng X, Xu H, Li C (2011) Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. BMC Genomics 12:1CrossRefGoogle Scholar
  139. Maheri-Sis N, Chaichi Semsari M, Eshratkhah B, Sadaghian M, Gorbani A, Hassanpour S (2011) Evaluation of the effects of Quebracho condensed tannin on faecal egg counts during naturally acquired mixed nematode infections in Moghani sheep. Ann Appl Biol Res 2:170–174Google Scholar
  140. Mahmoud SS, Croteau RB (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci 98:8915–8920PubMedPubMedCentralCrossRefGoogle Scholar
  141. Mahmoud SS, Croteau RB (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7:366–373PubMedCrossRefGoogle Scholar
  142. Mahmoud SS, Williams M, Croteau R (2004) Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil. Phytochemistry 65:547–554PubMedCrossRefGoogle Scholar
  143. Mahomoodally MF, Gurib-Fakim A, Subratty AH (2008) Antimicrobial activities and phytochemical profiles of endemic medicinal plants of Mauritius. Pharm Biol 43:237–242CrossRefGoogle Scholar
  144. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747PubMedGoogle Scholar
  145. Mangas S, Moyano E, Hernandez-Vazquez L, Bonfill M (2009) Centella asiatica (L) Urban: an updated approach. Plant Second terpenoids Research Signpost, Trivandrum, pp 55–74.Google Scholar
  146. Marques JV, Dalisay DS, Yang H, Lee C, Davin LB, Lewis NG (2014) A multi-omics strategy resolves the elusive nature of alkaloids in Podophyllum species. Mol BioSyst 10:2838–2849PubMedCrossRefGoogle Scholar
  147. Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802PubMedCrossRefGoogle Scholar
  148. McBrien NA, Stell WK, Carr B (2013) How does atropine exert its anti-myopia effects? Ophthalmic Physiol Opt 33:373–378PubMedCrossRefGoogle Scholar
  149. McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015PubMedPubMedCentralCrossRefGoogle Scholar
  150. Md-Mustafa ND, Khalid N, Gao H, Peng Z, Alimin MF, Bujang N, Ming WS, Mohd-Yusuf Y, Harikrishna JA, Othman RY (2014) Transcriptome profiling shows gene regulation patterns in a flavonoid pathway in response to exogenous phenylalanine in Boesenbergia rotunda cell culture. BMC Genomics 15:1CrossRefGoogle Scholar
  151. Melton L (2006) Body Blazes. Sci Am 294:24PubMedCrossRefGoogle Scholar
  152. Metzger KJ, Klaper R, Thomas MA (2011) Implications of informatics approaches in ecological research. Eco Inform 6:4–12CrossRefGoogle Scholar
  153. Miflin B (2000) Crop improvement in the 21st century. J Exp Bot 51:1–8PubMedCrossRefGoogle Scholar
  154. Milat M-L, Ricci P, Bonnet P, Blein J-P (1991) Capsidiol and ethylene production by tobacco cells in response to cryptogein, an elicitor from Phytophthora cryptogea. Phytochemistry 30:2171–2173CrossRefGoogle Scholar
  155. Mishra A, Kumar S, Pandey AK (2013) Scientific validation of the medicinal efficacy of Tinospora cordifolia. Sci World J:1–8Google Scholar
  156. Miyake Y, Shimoi K, Kumazawa S, Yamamoto K, Kinae N, Osawa T (2000) Identification and antioxidant activity of flavonoid metabolites in plasma and urine of eriocitrin-treated rats. J Agric Food Chem 48:3217–3224PubMedCrossRefGoogle Scholar
  157. Mohamed MA, Mammoud MR, Hayen H (2009) Evaluation of antinociceptive and anti-inflammatory activities of a new triterpene saponin from Bauhinia variegata leaves. Zeitschrift Fur Naturforschung 64:798–808PubMedGoogle Scholar
  158. Mohsenikia M, Alizadeh AM, Khodayari S, Khodayari H, Karimi A, Zamani M, Azizian S, Mohagheghi MA (2013) The protective and therapeutic effects of alpha-solanine on mice breast cancer. Eur J Pharmacol 718:1–9PubMedCrossRefGoogle Scholar
  159. Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, De Vos CHR, van Tunen AJ, Verhoeyen ME (2001) Over expression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19:470–474PubMedCrossRefGoogle Scholar
  160. Mukherjee AK, Basu S, Sarkar N, Ghosh AC (2001) Advances in cancer therapy with plant based natural products. Curr Med Chem 8:1467–1486PubMedCrossRefGoogle Scholar
  161. Mulder-Krieger TH, Verpoorte R, Svendsen AB, Scheffer JJC (1988) Production of essential oils and flavours in plant cell and tissue cultures A review. Plant Cell Tissue Organ Cult 13:85–154CrossRefGoogle Scholar
  162. Muriira NG, Xu W, Muchugi A, Xu J, Liu A (2015) De novo sequencing and assembly analysis of transcriptome in the Sodom apple (Calotropis gigantea). BMC Genomics 16:1CrossRefGoogle Scholar
  163. Nadiya F, Anjali N, Jinu T, Gangaprasad A, Sabu KK (2017) Transcriptome profiling of Elettaria cardamomum (L.) Maton (small cardamom). Genomics Data 11:102–103. doi: 10.1016/j.gdata.2016.12.013 PubMedCrossRefGoogle Scholar
  164. Nagira Y, Shimamura K, Hirai S, Shimanuki M, Kodama H, Ozeki Y (2006) Identification and characterization of genes induced for anthocyanin synthesis and chlorophyll degradation in regenerated torenia shoots using suppression subtractive hybridization, cDNA microarrays, and RNAi techniques. J Plant Res 119:217–230PubMedCrossRefGoogle Scholar
  165. Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, Shiwa Y, Ishikawa S, Linak MC, Hirai A, Takahashi H (2011) Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res 39:e90–e90PubMedPubMedCentralCrossRefGoogle Scholar
  166. Nakasugi K, Crowhurst RN, Bally J, Wood CC, Hellens RP, Waterhouse PM (2013) De novo transcriptome sequence assembly and analysis of RNA silencing genes of Nicotiana benthamiana. PLoS One 8:e59534PubMedPubMedCentralCrossRefGoogle Scholar
  167. Ncube B, Van Staden J (2015) Tilting plant metabolism for improved metabolite biosynthesis and enhanced human benefit. Molecules 20:12698–12731PubMedCrossRefGoogle Scholar
  168. Neale DB, Wheeler NC, Centralia W (2004) The Loblolly Pine Genome Project. 2011 08 25]. http//dendrome. ucdavis. edu/NealeLab/lpgpGoogle Scholar
  169. Nicolaou KC, Chen JS (2011) Classics in Total Synthesis III: Further Targets, Strategies, Methods 746 pages. Weinheim: Wiley-VCH.Google Scholar
  170. Nishizuka Y (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334:661–665PubMedCrossRefGoogle Scholar
  171. Oksman-Caldentey K-M, Inze D, Orešič M (2004) Connecting genes to metabolites by a systems biology approach. Proc Natl Acad Sci USA 101:9949–9950PubMedPubMedCentralCrossRefGoogle Scholar
  172. Oksman-Caldentey K-M, Saito K (2005) Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr Opin Biotechnol 16:174–179PubMedCrossRefGoogle Scholar
  173. O’Neil ST, Dzurisin JDK, Carmichael RD, Lobo NF, Emrich SJ, Hellmann JJ (2010) Population-level transcriptome sequencing of nonmodel organisms Erynnis propertius and Papilio zelicaon. BMC Genomics 11:1CrossRefGoogle Scholar
  174. Pandey AK (2007) Anti-staphylococcal activity of a pan-tropical aggressive and obnoxious weed Parthenium histerophorus: an in vitro study. Natl Acad Sci Lett 30:383–386Google Scholar
  175. Pandey AK, Mishra AK, Mishra A (2012) Antifungal and antioxidative potential of oil and extracts derived from leaves of Indian spice plant Cinnamomum tamala. Cell Mol Biol 58:142–147PubMedGoogle Scholar
  176. Panter KE, Welch KD, Gardner DR, Green BT (2013) Poisonous plants: Effects on embryo and fetal development. Birth Defects Res Part C: Embryo Today: Rev 99:223–234CrossRefGoogle Scholar
  177. Parchmann S, Gundlach H, Mueller MJ (1997) Induction of 12-oxo-phytodienoic acid in wounded plants and elicited plant cell cultures. Plant Physiol 115:1057–1064PubMedPubMedCentralCrossRefGoogle Scholar
  178. Park E-S, Moon W-S, Song M-J, Kim M-N, Chung K-H, Yoon J-S (2001) Antimicrobial activity of phenol and benzoic acid derivatives. Int Biodeterior Biodegrad 47:209–214CrossRefGoogle Scholar
  179. Park S-U, Yu M, Facchini PJ (2002) Antisense RNA-mediated suppression of benzophenanthridine alkaloid biosynthesis in transgenic cell cultures of California poppy. Plant Physiol 128:696–706PubMedPubMedCentralCrossRefGoogle Scholar
  180. Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253(80):895–897PubMedCrossRefGoogle Scholar
  181. Petersen BL, Andréasson E, Bak S, Agerbirk N, Halkier BA (2001) Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p-hydroxybenzylglucosinolate. Planta 212:612–618PubMedCrossRefGoogle Scholar
  182. Pickel B, Drew DP, Manczak T, Weitzel C, Simonsen HT, Ro D-K (2012) Identification and characterization of a kunzeaol synthase from Thapsia garganica: implications for the biosynthesis of the pharmaceutical thapsigargin. Biochem J 448:261–271PubMedCrossRefGoogle Scholar
  183. Polt RL (1995) Method for making amino acid glycosides and glycopeptides. Google Patents Accessed from Scholar
  184. Prasath D, Karthika R, Habeeba NT, Suraby EJ, Rosana OB, Shaji A, Eapen SJ, Deshpande U, Anandaraj M (2014) Comparison of the transcriptomes of ginger (Zingiber officinale Rosc.) and mango ginger (Curcuma amada Roxb.) in response to the bacterial wilt infection. PLoS One 9:e99731PubMedPubMedCentralCrossRefGoogle Scholar
  185. Pyle BW, Tran HT, Pickel B, Haslam TM, Gao Z, MacNevin G, Vederas JC, Kim S-U, Ro D-K (2012) Enzymatic synthesis of valerena-4,7(11)-diene by a unique sesquiterpene synthase from the valerian plant (Valeriana officinalis). Federation of European Biochemical Societies 279:3136–3146Google Scholar
  186. Que Y, Su Y, Guo J, Wu Q, Xu L (2014) A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-seq. PLoS One 9:e106476PubMedPubMedCentralCrossRefGoogle Scholar
  187. Reddy NRR, Mehta RH, Soni PH, Makasana J, Gajbhiye NA, Ponnuchamy M, Kumar J (2015) Next Generation Sequencing and Transcriptome Analysis Predicts Biosynthetic Pathway of Sennosides from Senna (Cassia angustifolia Vahl.), a Non-Model Plant with Potent Laxative Properties. PLoS One 10:e0129422CrossRefGoogle Scholar
  188. Reinli K, Block G (1996) Phytoestrogen content of foods—a compendium of literature values. Nutr Cancer 26:123–148PubMedCrossRefGoogle Scholar
  189. Renaut S, Grassa CJ, Moyers BT, Kane NC, Rieseberg LH (2012) The population genomics of sunflowers and genomic determinants of protein evolution revealed by RNAseq. Biology (Basel) 1:575–596.Google Scholar
  190. Rijhwani SK, Shanks JV (1998) Effect of elicitor dosage and exposure time on biosynthesis of indole alkaloids by Catharanthus roseus hairy root cultures. Biotechnol Prog 14:442–449PubMedCrossRefGoogle Scholar
  191. Robbins MP, Thomas B, Morris P (1995) Phenylpropanoid defence responses in transgenic Lotus corniculatus II. Modelling plant defence responses in transgenic root cultures using thiol and carbohydrate elicitors. J Exp Bot 46:513–524CrossRefGoogle Scholar
  192. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada HM, Qian JQ (2010) De novo assembly and analysis of RNA-seq data. Nat Methods 7:909–912PubMedCrossRefGoogle Scholar
  193. Rohini VK, Rao KS (2001) Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci 160:889–898PubMedCrossRefGoogle Scholar
  194. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M, Hoon J, Simons JF, Marran D, Myers JW, Davidson JF, Branting A, Nobile JR, Puc BP, Light D, Clark TA, Huber M, Branciforte JT, Stoner IB, Cawley SE, Lyons M, Fu Y, Homer N, Sedova M, Miao X, Reed B, Sabina J, Feierstein E, Schorn M, Alanjary M, Dimalanta E, Dressman D, Kasinskas R, Sokolsky T, Fidanza JA, Namsaraev E, McKernan KJ, Williams A, Roth GT, Bustillo J (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352PubMedCrossRefGoogle Scholar
  195. Rozov-Ung I, Mreyoud A, Moore J, Wilding GE, Khawam E, Lackner JM, Semler JR, Sitrin MD (2014) Detection of drug effects on gastric emptying and contractility using a wireless motility capsule. BMC Gastroenterol 14:1CrossRefGoogle Scholar
  196. Runguphan W, Maresh JJ, O’Connor SE (2009) Silencing of tryptamine biosynthesis for production of nonnatural alkaloids in plant culture. Proc Natl Acad Sci 106:13673–13678PubMedPubMedCentralCrossRefGoogle Scholar
  197. Safayhi H, Sabieraj J, Sailer ER, Ammon HP (1994) Chamazulene: an antioxidant-type inhibitor of leukotriene B4 formation. Planta Med 60:410–413PubMedCrossRefGoogle Scholar
  198. Salzberg SL, Yorke JA (2005) Beware of mis-assembled genomes. Bioinformatics 21:4320–4321PubMedCrossRefGoogle Scholar
  199. Sangwan RS, Tripathi S, Singh J, Narnoliya LK, Sangwan NS (2013) De novo sequencing and assembly of Centella asiatica leaf transcriptome for mapping of structural, functional and regulatory genes with special reference to secondary metabolism. Gene 525:58–76PubMedCrossRefGoogle Scholar
  200. Schliesky S, Gowik U, Weber APM, Bräutigam A (2012) RNA-seq assembly–Are we there yet? Front Plant Sci 3:1–12CrossRefGoogle Scholar
  201. Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28:1086–1092PubMedPubMedCentralCrossRefGoogle Scholar
  202. Sharma HC, Crouch JH, Sharma KK, Seetharama N, Hash CT (2002) Applications of biotechnology for crop improvement: prospects and constraints. Plant Sci 163:381–395CrossRefGoogle Scholar
  203. Sheeja TE, Deepa K, Santhi R, Sasikumar B (2015) Comparative Transcriptome Analysis of Two Species of Curcuma Contrasting in a High-Value Compound Curcumin: Insights into Genetic Basis and Regulation of Biosynthesis. Plant Mol Biol Report 33:1825–1836CrossRefGoogle Scholar
  204. Shexia Ma (2012). Production of secondary organic Aerosol from multiphase monoterpenes, atmospheric Aerosols – regional characteristics – chemistry and physics, (ed) Dr. Hayder Abdul-RazzakGoogle Scholar
  205. Singh VK, Jain M (2014) Transcriptome profiling for discovery of genes involved in shoot apical meristem and flower development. Genomics data 2:135–138PubMedPubMedCentralCrossRefGoogle Scholar
  206. Spencer JPE, Vauzour D, Rendeiro C (2009) Flavonoids and cognition: the molecular mechanisms underlying their behavioural effects. Arch Biochem Biophys 492:1–9PubMedCrossRefGoogle Scholar
  207. Stewart AJ, Bozonnet S, Mullen W, Jenkins GI, Lean MEJ, Crozier A (2000) Occurrence of flavonols in tomatoes and tomato-based products. J Agric Food Chem 48:2663–2669PubMedCrossRefGoogle Scholar
  208. Sun C, Li Y, Wu Q, Luo H, Sun Y, Song J, Lui EMK, Chen S (2010) De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics 11:262PubMedPubMedCentralCrossRefGoogle Scholar
  209. Suntornsuk L, Anurukvorakun O (2005) Precision improvement for the analysis of flavonoids in selected Thai plants by capillary zone electrophoresis. Electrophoresis 26:648–660PubMedCrossRefGoogle Scholar
  210. Swarbreck SM, Lindquist EA, Ackerly DD, Andersen GL (2011) Analysis of leaf and root transcriptomes of soil-grown Avena barbata plants. Plant Cell Physiol 52:317–332PubMedCrossRefGoogle Scholar
  211. Tai Y, Wei C, Yang H, Zhang L, Chen Q, Deng W, Wei S, Zhang J, Fang C, Ho C (2015) Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera). BMC Plant Biol 15:1CrossRefGoogle Scholar
  212. Takita K, Herlenius E, Yamamoto Y, Lindahl SGE (2000) Effects of neuroactive substances on the morphine-induced respiratory depression; an in vitro study. Brain Res 884:201–205PubMedCrossRefGoogle Scholar
  213. Tapas AR, Sakarkar DM, Kakde RB (2008) Flavonoids as nutraceuticals: a review. Trop J Pharm Res 7:1089–1099CrossRefGoogle Scholar
  214. Tattersall DB, Bak S, Jones PR, Olsen CE, Nielsen JK, Hansen ML, Høj PB, Møller BL (2001) Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293(80):1826–1828PubMedCrossRefGoogle Scholar
  215. Teli NP, Timko MP (2004) Recent developments in the use of transgenic plants for the production of human therapeutics and biopharmaceuticals. Plant Cell Tissue Organ Cult 79:125–145CrossRefGoogle Scholar
  216. Tholl D (2015) Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol 148:63–106PubMedGoogle Scholar
  217. Thomas B, Van Deynze A, Bradford K (2002) Production of therapeutic proteins in plants. UCANR Publications, USA.Google Scholar
  218. Threlfall DR, Whitehead IM (1988) The use of biotic and abiotic elicitors to induce the formation of secondary plant products in cell suspension cultures of solanaceous plants. Biochem Soc Trans 16:71–75CrossRefGoogle Scholar
  219. Tian H, Xu X, Zhang F, Wang Y, Guo S, Qin X, Du G (2015) Analysis of Polygala tenuifolia transcriptome and description of secondary metabolite biosynthetic pathways by illumina sequencing. Int J Genomics 2015:1–11.Google Scholar
  220. Timme RE, Bachvaroff TR, Delwiche CF (2012) Broad Phylogenomic Sampling and the Sister Lineage of Land Plants. PLoS One 7:e29696PubMedPubMedCentralCrossRefGoogle Scholar
  221. Trethewey RN (2004) Metabolite profiling as an aid to metabolic engineering in plants. Curr Opin Plant Biol 7:196–201PubMedCrossRefGoogle Scholar
  222. Underwood BA, Tieman DM, Shibuya K, Dexter RJ, Loucas HM, Simkin AJ, Sims CA, Schmelz EA, Klee HJ, Clark DG (2005) Ethylene-regulated floral volatile synthesis in petunia corollas. Plant Physiol 138:255–266PubMedPubMedCentralCrossRefGoogle Scholar
  223. Upadhyay S, Phukan UJ, Mishra S, Shukla RK (2014) De novo leaf and root transcriptome analysis identified novel genes involved in steroidal sapogenin biosynthesis in Asparagus racemosus. BMC Genomics 15:1CrossRefGoogle Scholar
  224. van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289(80):295–297PubMedCrossRefGoogle Scholar
  225. Van der Rest B, Danoun S, Boudet A-M, Rochange SF (2006) Down-regulation of cinnamoyl-CoA reductase in tomato (Solanum lycopersicum L.) induces dramatic changes in soluble phenolic pools. J Exp Bot 57:1399–1411PubMedCrossRefGoogle Scholar
  226. Van Soest PJ (1982) Nutritional ecology of the ruminant. Ruminant metabolism, nutritional strategies, the cellulolytic fermentation and the chemistry of forages and plant fibers. O & B Books, Inc.Google Scholar
  227. Veronese P, Li X, Niu X, Weller SC, Bressan RA, Hasegawa PM (2001) Bioengineering mint crop improvement. Plant Cell Tissue Organ Cult 64:133–144CrossRefGoogle Scholar
  228. Verpoorte R (2000) Metabolic engineering of plant secondary metabolism. Springer Science & Business Media, DordrechtGoogle Scholar
  229. Verpoorte R, Memelink J (2002) Engineering secondary metabolite production in plants. Curr Opin Biotechnol 13:181–187PubMedCrossRefGoogle Scholar
  230. Wagner K-H, Elmadfa I (2003) Biological relevance of terpenoids. Overview focusing on mono, di- and tetraterpenes. Ann Nutr Metab 47:95–106PubMedCrossRefGoogle Scholar
  231. Wang C, Wu J, Mei X (2001) Enhancement of taxol production and excretion in Taxus chinensis cell culture by fungal elicitation and medium renewal. Appl Microbiol Biotechnol 55:404–410PubMedCrossRefGoogle Scholar
  232. Wang G, Tang W, Bidigare RR (2005) Terpenoids as therapeutic drugs and pharmaceutical agents. In: Natural products. Springer, pp 197–227Google Scholar
  233. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63PubMedPubMedCentralCrossRefGoogle Scholar
  234. Ward JA, Weber CA (2011) Comparative RNA-seq for the investigation of resistance to Phytophthora root rot in the red raspberry’Latham’. In: X International Rubus and Ribes Symposium 946:67–72Google Scholar
  235. Wibberley MS, Lenton JR, Neill SJ (1994) Sesquiterpenoid phytoalexins produced by hairy roots of Nicotiana tabacum. Phytochemistry 37:349–351CrossRefGoogle Scholar
  236. Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75:225–233CrossRefGoogle Scholar
  237. Wolf JBW, Lindell J, Backström N (2010) Speciation genetics: current status and evolving approaches. Philos Trans R Soc B Biol Sci 365:1717–1733.Google Scholar
  238. Wróbel-Kwiatkowska M, Starzycki M, Zebrowski J, Oszmiański J, Szopa J (2007) Lignin deficiency in transgenic flax resulted in plants with improved mechanical properties. J Biotechnol 128:919–934PubMedCrossRefGoogle Scholar
  239. Wu J, Lin L (2002) Elicitor-like effects of low-energy ultrasound on plant (Panax ginseng) cells: induction of plant defense responses and secondary metabolite production. Appl Microbiol Biotechnol 59:51–57PubMedCrossRefGoogle Scholar
  240. Xiao M, Zhang Y, Chen X, Lee E-J, Barber CJS, Chakrabarty R, Desgagné-Penix I, Haslam TM, Kim Y-B, Liu E (2013) Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J Biotechnol 166:122–134PubMedCrossRefGoogle Scholar
  241. Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, Huang W, He G, Gu S, Li S (2014) SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 30:1660–1666PubMedCrossRefGoogle Scholar
  242. Xu Y, Li X, Lin J, Wang Z, Yang Q, Chang Y (2015) Transcriptome sequencing and analysis of major genes involved in calcium signaling pathways in pear plants (Pyrus calleryana Decne.). BMC Genomics 16:1CrossRefGoogle Scholar
  243. Yan Q, Hu Z, Tan RX, Wu J (2005) Efficient production and recovery of diterpenoid tanshinones in Salvia miltiorrhiza hairy root cultures with in situ adsorption, elicitation and semi-continuous operation. J Biotechnol 119:416–424PubMedCrossRefGoogle Scholar
  244. Ye X, Al-Babili S, Kloti A, Zhang J (2000) Engineering the provitamin A beta-carotene biosynthetic pathway into carotenoid free rice endosperm. Science 287(80):5451Google Scholar
  245. Yoshizawa S, Horiuchi T, Fujiki H, Yoshida T, Okuda T, Sugimura T (1987) Antitumor promoting activity of (−)-epigallocatechin gallate, the main constituent of “Tannin” in green tea. Phytother Res 1:44–47CrossRefGoogle Scholar
  246. Yue Y, Yu R, Fan Y (2015) Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronarium. BMC Genomics 16:470PubMedPubMedCentralCrossRefGoogle Scholar
  247. Zainol MK, Abd-Hamid A, Yusof S, Muse R (2003) Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban. Food Chem 81:575–581CrossRefGoogle Scholar
  248. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829PubMedPubMedCentralCrossRefGoogle Scholar
  249. Zha W, Liang G, Xiao J, Studer EJ, Hylemon PB, Pandak WM Jr, Wang G, Li X, Zhou H (2010) Berberine inhibits HIV protease inhibitor-induced inflammatory response by modulating ER stress signaling pathways in murine macrophages. PLoS One 5:e9069PubMedPubMedCentralCrossRefGoogle Scholar
  250. Zhang Q, Cai L, Zhong G, Luo W (2010) [Simultaneous determination of jatrorrhizine, palmatine, berberine, and obacunone in Phellodendri amurensis Cortex by RP-HPLC]. Zhongguo Zhong Yao Za Zhi= Zhongguo Zhongyao Zazhi= China J Chin Mater Med 35:2061–2064.Google Scholar
  251. Zhou Q, Liang D, Deng A, Zhang J, Wu C, Nie Z, Wang Y (2013) Anti-tussive, expectorant and bronchodilating effects of ethanol extract of Sorghum bicolor (L.) Moench roots. J Ethnopharmacol 149:297–302PubMedCrossRefGoogle Scholar
  252. Zhu QY, Zhang A, Tsang D, Huang Y, Chen Z-Y (1997) Stability of green tea catechins. J Agric Food Chem 45:4624–4628CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Biotechnology and Bioinformatics DivisionJawaharlal Nehru Tropical Botanic Garden and Research InstituteThiruvananthapuramIndia

Personalised recommendations