Abstract
With a rapid growth in different fields of science and technology, hopes for further improvement of human life were developed; among them is progress in medicine, which is directly linked with human health. A lot of researches have been conducted specifically for improving the current modalities of diagnosis and treatment of various diseases, especially cancer. Among them is the application of nanotechnology in the field of medicine, which is known as nanomedicine that can develop new therapeutic and diagnostic concepts in all areas of medicine. Nano-theranostics, which is based on the fusion of therapeutic and diagnostic technologies by using nanoparticles, is one of the newest approaches in this field and finally leads to individualized medicine. Magnetic nanoparticle with properties such as good biocompatibility and the ability of surface engineering could be considered as a candidate for theranostic application; briefly it not only could act as a carrier for drugs in drug delivery systems but also could act as therapeutic agent in hyperthermia. Moreover, it could be used as a contrast agent in magnetic resonance imaging (MRI) or could carry imaging agent on its surface. The ability of surface modification makes it possible to transmit engineered nanoparticles to the target organs and reduce side effects of drugs on the other organs; although in this situation external magnetic field could be used for targeting either. These features made us to study the ability of magnetic nanoparticle as a nanotheranostic agent in detail. In summary, in this context we try to introduce magnetic nanoparticle, different approaches that are be used for its synthesis, its applications in the field of treatment and diagnostic and finally its usage as a nanotheranostic agent.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
MNPs.
- 2.
MRI.
- 3.
SPIONs.
- 4.
MCLs.
- 5.
CTCs.
- 6.
NMR.
- 7.
MS.
- 8.
PEG.
- 9.
FITC.
- 10.
EPR.
- 11.
PLA.
- 12.
PGA.
- 13.
PVA.
- 14.
PLGA.
- 15.
PNIPAAM.
- 16.
PVCL.
- 17.
siRNA.
- 18.
PTT.
- 19.
NIR.
- 20.
PTA.
- 21.
AMF.
- 22.
PDT.
- 23.
ROS.
- 24.
SDT.
- 25.
HPG.
- 26.
HSA.
- 27.
GO.
- 28.
PEI.
- 29.
FA.
- 30.
rGO.
- 31.
PA.
- 32.
FGF.
References
Z. Dai, Advances in Nanotheranostics I: Design and Fabrication of Theranosic Nanoparticles (Springer, Berlin, 2015)
K.Y. Choi, G. Liu, S. Lee, X. Chen, Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale 4, 330–342 (2012)
Y. Zhou, X. Liang, Z. Dai, Porphyrin-loaded nanoparticles for cancer theranostics. Nanoscale 8, 12394–12405 (2016)
Q. Chen, H. Ke, Z. Dai, Z. Liu, Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials 73, 214–230 (2015)
K. Greish, Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Cancer Nanotechnol. Method. Protoc. 624, 25–37 (2010)
X. Wu, Y. Gao, C.-M. Dong, Polymer/gold hybrid nanoparticles: from synthesis to cancer theranostic applications. RSC Advances 5, 13787–13796 (2015)
D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007)
S.K. Sahoo, V. Labhasetwar, Nanotech approaches to drug delivery and imaging. Drug Discovery Today 8, 1112–1120 (2003)
J.T. Cole, N.B. Holland, Multifunctional nanoparticles for use in theranostic applications. Drug Deliv. Trans. Res. 5, 295–309 (2015)
B. Semete, L. Booysen, Y. Lemmer, L. Kalombo, L. Katata, J. Verschoor, H.S. Swai, In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomed. Nanotechnol. Biol. Med. 6, 662–671 (2010)
H. Markides, M. Rotherham, A. El Haj, Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J. Nanomater. 2012, 13 (2012)
M. Mahmoudi, A. Simchi, M. Imani, M.A. Shokrgozar, A.S. Milani, U.O. Häfeli, P. Stroeve, A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf. B 75, 300–309 (2010)
S. Parveen, R. Misra, S.K. Sahoo, Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed. Nanotechnol. Biol. Med. 8, 147–166 (2012)
A. Kroll, M.H. Pillukat, D. Hahn, J. Schnekenburger, Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur. J. Pharm. Biopharm. 72, 370–377 (2009)
S.S. Kelkar, T.M. Reineke, Theranostics: combining imaging and therapy. Biocon. Chem. 22, 1879–1903 (2011)
J. Wang, Y. Gao, Y. Hou, F. Zhao, F. Pu, X. Liu, Z. Wu, Y. Fan, Evaluation on cartilage morphology after intra-articular injection of titanium dioxide nanoparticles in rats. J. Nanomater. 2012, 1–11 (2012)
S. Neethirajan, D.S. Jayas, Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol. 4, 39–47 (2011)
Q. Huang, H. Yu, Q. Ru, Bioavailability and delivery of nutraceuticals using nanotechnology. J. Food Sci. 75, R50–R57 (2010)
V. Sanna, N. Pala, M. Sechi, Targeted therapy using nanotechnology: focus on cancer. Int. J. Nanomed. 9, 467–483 (2014)
T.L. Doane, C. Burda, The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885–2911 (2012)
B.Y. Kim, J.T. Rutka, W.C. Chan, Nanomedicine. N. Engl. J. Med. 363, 2434–2443 (2010)
Y. Gao, J. Xie, H. Chen, S. Gu, R. Zhao, J. Shao, L. Jia, Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnol. Adv. 32, 761–777 (2014)
M.J. Sailor, J.H. Park, Hybrid nanoparticles for detection and treatment of cancer. Adv. Mater. 24, 3779–3802 (2012)
J.V. Jokerst, S.S. Gambhir, Molecular imaging with theranostic nanoparticles. Acc. Chem. Res. 44, 1050–1060 (2011)
B. Fadeel, A.E. Garcia-Bennett, Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev. 62, 362–374 (2010)
R. Singh, J.W. Lillard, Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86, 215–223 (2009)
C.P. McCoy, C. Brady, J.F. Cowley, S.M. McGlinchey, N. McGoldrick, D.J. Kinnear, G.P. Andrews, D.S. Jones, Triggered drug delivery from biomaterials. Expert Opin. Drug Deliv. 7, 605–616 (2010)
P. Rai, S. Mallidi, X. Zheng, R. Rahmanzadeh, Y. Mir, S. Elrington, A. Khurshid, T. Hasan, Development and applications of photo-triggered theranostic agents. Adv. Drug Deliv. Rev. 62, 1094–1124 (2010)
K.H. Martin, P.A. Dayton, Current status and prospects for microbubbles in ultrasound theranostics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 329–345 (2013)
R.R. Ragheb, D. Kim, A. Bandyopadhyay, H. Chahboune, B. Bulutoglu, H. Ezaldein, J.M. Criscione, T.M. Fahmy, Induced clustered nanoconfinement of superparamagnetic iron oxide in biodegradable nanoparticles enhances transverse relaxivity for targeted theranostics. Magn. Reson. Med. 70, 1748–1760 (2013)
D. Maity, S.-G. Choo, J. Yi, J. Ding, J.M. Xue, Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. J. Magn. Magn. Mater. 321, 1256–1259 (2009)
S. Shen, S. Wang, R. Zheng, X. Zhu, X. Jiang, D. Fu, W. Yang, Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials 39, 67–74 (2015)
J. Wan, W. Cai, X. Meng, E. Liu, Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chem. Commun. 47, 5004–5006 (2007)
D. Ho, X. Sun, S. Sun, Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res. 44, 875–882 (2011)
A.J. Cole, V.C. Yang, A.E. David, Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol. 29, 323–332 (2011)
A.H. Lu, E.E.L. Salabas, F. Schüth, Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1244 (2007)
M. Faraji, Y. Yamini, M. Rezaee, Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J. Iran. Chem. Soc. 7, 1–37 (2010)
C. Okoli, Development of protein-functionalized magnetic iron oxide nanoparticles: potential application in water treatment, Doctoral thesis, 2012
D. Caruntu, G. Caruntu, C.J. O’Connor, Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols. J. Phys. D Appl. Phys. 40, 5801–5810 (2007)
A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005)
S. Sun, H. Zeng, Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204–8205 (2002)
R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, S. Sun, Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 22, 2729–2742 (2010)
P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. González-Carreño, C.J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 36, R182–R198 (2003)
J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li, M. Li, Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res., Part A 80, 333–341 (2007)
Z. Liu, Y. Liu, K. Yao, Z. Ding, J. Tao, X. Wang, Synthesis and magnetic properties of Fe3O4 nanoparticles. J. Mater. Synth. Process. 10, 83–87 (2002)
E. Bertolucci, A.M.R. Galletti, C. Antonetti, F. Piccinelli, M. Marracci, B. Tellini, C. Visone, Chemical and magnetic properties characterization of magnetic nanoparticles, in Instrumentation and Measurement Technology Conference (I2MTC), IEEE International (2015), pp. 1492–1496
V. Dolgovskiy, V. Lebedev, S. Colombo, A. Weis, B. Michen, L. Ackermann-Hirschi, A. Petri-Fink, A quantitative study of particle size effects in the magnetorelaxometry of magnetic nanoparticles using atomic magnetometry. J. Magn. Magn. Mater. 379, 137–150 (2015)
K.C.-F. Leung, S. Xuan, Y.J. Wang, From micro to nano magnetic spheres: size-controllable synthesis. Multilayer Coat. Biomed. Appl. 13, 15 (2016)
P.I. Soares, F. Lochte, C. Echeverria, L.C. Pereira, J.T. Coutinho, I.M. Ferreira, C.M. Novo, Thermal and magnetic properties of iron oxide colloids: influence of surfactants. Nanotechnology 26, 425704 (2015)
K.L. Aillon, Y. Xie, N. El-Gendy, C.J. Berkland, M.L. Forrest, Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev. 61, 457–466 (2009)
C.C. Berry, S. Wells, S. Charles, A.S. Curtis, Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24, 4551–4557 (2003)
A. Verma, F. Stellacci, Effect of surface properties on nanoparticle–cell interactions. Small 6, 12–21 (2010)
J. Huang, L. Bu, J. Xie, K. Chen, Z. Cheng, X. Li, X. Chen, Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 4, 7151–7160 (2010)
D. Stanicki, L. Vander Elst, R.N. Muller, S. Laurent, Synthesis and processing of magnetic nanoparticles. Curr. Opin. Chem. Eng. 8, 7–14 (2015)
C. Corot, P. Robert, J.-M. Idée, M. Port, Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliv. Rev. 58, 1471–1504 (2006)
L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 112, 5818–5878 (2012)
X. Li, W. Liu, L. Sun, K.E. Aifantis, B. Yu, Y. Fan, Q. Feng, F. Cui, F. Watari, Effects of physicochemical properties of nanomaterials on their toxicity. J. Biomed. Mater. Res., Part A 103, 2499–2507 (2015)
K. Xiao, Y. Li, J. Luo, J.S. Lee, W. Xiao, A.M. Gonik, R.G. Agarwal, K.S. Lam, The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32, 3435–3446 (2011)
M. Kim, J. Jung, J. Lee, K. Na, S. Park, J. Hyun, Amphiphilic comblike polymers enhance the colloidal stability of Fe3O4 nanoparticles. Colloids Surf., B 76, 236–240 (2010)
M. Szekeres, I.Y. Tóth, E. Illés, A. Hajdú, I. Zupkó, K. Farkas, G. Oszlánczi, L. Tiszlavicz, E. Tombácz, Chemical and colloidal stability of carboxylated core-shell magnetite nanoparticles designed for biomedical applications. Int. J. Mol. Sci. 14, 14550–14574 (2013)
S. Ghosh, W. Jiang, J.D. McClements, B. Xing, Colloidal stability of magnetic iron oxide nanoparticles: influence of natural organic matter and synthetic polyelectrolytes. Langmuir 27, 8036–8043 (2011)
D. Singh, J.M. McMillan, X.-M. Liu, H.M. Vishwasrao, A.V. Kabanov, M. Sokolsky-Papkov, H.E. Gendelman, Formulation design facilitates magnetic nanoparticle delivery to diseased cells and tissues. Nanomedicine 9, 469–485 (2014)
S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Van der Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008)
S. Mornet, J. Portier, E. Duguet, A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran. J. Magn. Magn. Mater. 293, 127–134 (2005)
L. LaConte, N. Nitin, G. Bao, Magnetic nanoparticle probes. Mater. Today 8, 32–38 (2005)
A.A. Ismail, Synthesis and characterization of Y2O3/Fe2O3/TiO2 nanoparticles by sol–gel method. Appl. Catal. B 58, 115–121 (2005)
Z. Dai, F. Meiser, H. Möhwald, Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol–gel process. J. Colloid Interface Sci. 288, 298–300 (2005)
A.S. Teja, P.-Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45 (2009)
A. Roca, M. Morales, K. O’Grady, C. Serna, Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology 17, 2783 (2006)
Z. Xu, C. Shen, Y. Hou, H. Gao, S. Sun, Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem. Mater. 21, 1778–1780 (2009)
P. Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreño, C.J. Serna, Synthesis, properties and biomedical applications of magnetic nanoparticles. Handbook Magn. Mater. 16, 403–482 (2006)
W. Cai, J. Wan, Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J. Colloid Interface Sci. 305, 366–370 (2007)
J. Merikhi, H.-O. Jungk, C. Feldmann, Sub-micrometer CoAl2O4 pigment particles—synthesis and preparation of coatings. J. Mater. Chem. 10, 1311–1314 (2000)
S.-J. Park, S. Kim, S. Lee, Z.G. Khim, K. Char, T. Hyeon, Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J. Am. Chem. Soc. 122, 8581–8582 (2000)
R.A. Mukh-Qasem, A. Gedanken, Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles. J. Colloid Interface Sci. 284, 489–494 (2005)
E.H. Kim, H.S. Lee, B.K. Kwak, B.-K. Kim, Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 289, 328–330 (2005)
W. Wu, Q. He, C. Jiang, Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397–415 (2008)
Y.-H. Zheng, Y. Cheng, F. Bao, Y.-S. Wang, Synthesis and magnetic properties of Fe3O4 nanoparticles. Mater. Res. Bull. 41, 525–529 (2006)
X. Wang, J. Zhuang, Q. Peng, Y. Li, A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005)
H. Cai, X. An, J. Cui, J. Li, S. Wen, K. Li, M. Shen, L. Zheng, G. Zhang, X. Shi, Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl. Mater. Interfaces 5, 1722–1731 (2013)
B.K. Paul, S.P. Moulik, Uses and applications of microemulsions. Curr. Sci. Bangalore 80, 990–1001 (2001)
M. Darbandi, F. Stromberg, J. Landers, N. Reckers, B. Sanyal, W. Keune, H. Wende, Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method. J. Phys. D Appl. Phys. 45, 195001 (2012)
S. Ghorbanzadeh-Mashkani, P. Tajer-Mohammad-Ghazvini, A. Nozad-Golikand, R. Kasra-Kermanshahi, M.-R. Davarpanah, Synthesis of sterile and pyrogen free biogenic magnetic nanoparticles: biotechnological potential of magnetotactic bacteria for production of nanomaterials, in Proceedings of World Academy of Science, Engineering and Technology, World Academy of Science, Engineering and Technology (WASET), vol. 74 (2013), pp. 194–198
C. Prasad, K. Sreenivasulu, S. Gangadhara, P. Venkateswarlu, A facile green synthesis of spherical Fe3O4 magnetic nanoparticles and their effect on degradation of methylene blue in aqueous solution. J. Mol. Liq. 221, 993–998 (2016)
M. Mahdavi, F. Namvar, M.B. Ahmad, R. Mohamad, Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18, 5954–5964 (2013)
J. Dobson, Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67, 55–60 (2006)
A. Ito, M. Kamihira, Tissue engineering using magnetite nanoparticles. Progr. Mol. Biol. Trans. Sci. 104, 355–395 (2010)
Š. Kubinová, E. Syková, Nanotechnologies in regenerative medicine. Minim. Invasive Ther. Allied Technol. 19, 144–156 (2010)
N. Bock, A. Riminucci, C. Dionigi, A. Russo, A. Tampieri, E. Landi, V.A. Goranov, M. Marcacci, V. Dediu, A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 6, 786–796 (2010)
M. Ishii, R. Shibata, Y. Numaguchi, T. Kito, H. Suzuki, K. Shimizu, A. Ito, H. Honda, T. Murohara, Enhanced angiogenesis by transplantation of mesenchymal stem cell sheet created by a novel magnetic tissue engineering method. Arterioscler. Thromb. Vasc. Biol. 31, 2210–2215 (2011)
M. Mahmoudi, M. Zhao, Y. Matsuura, S. Laurent, P.C. Yang, D. Bernstein, P. Ruiz-Lozano, V. Serpooshan, Infection-resistant MRI-visible scaffolds for tissue engineering applications. BioImpacts: BI 6, 111–115 (2016)
V. Kandi, S. Kandi, Antimicrobial properties of nanomolecules: potential candidates as antibiotics in the era of multi-drug resistance. Epidemiol. Health 37, e2015020 (2015)
E.N. Taylor, K.M. Kummer, N.G. Durmus, K. Leuba, K.M. Tarquinio, T.J. Webster, Superparamagnetic Iron Oxide Nanoparticles (SPION) for the treatment of antibiotic-resistant biofilms. Small 8, 3016–3027 (2012)
T. Sasaki, N. Iwasaki, K. Kohno, M. Kishimoto, T. Majima, S.I. Nishimura, A. Minami, Magnetic nanoparticles for improving cell invasion in tissue engineering. J. Biomed. Mater. Res., Part A 86, 969–978 (2008)
A. Ito, H. Akiyama, Y. Kawabe, M. Kamihira, Magnetic force-based cell patterning using Arg-Gly-Asp (RGD) peptide-conjugated magnetite cationic liposomes. J. Biosci. Bioeng. 104, 288–293 (2007)
A. Ito, Y. Takizawa, H. Honda, K.-I. Hata, H. Kagami, M. Ueda, T. Kobayashi, Tissue engineering using magnetite nanoparticles and magnetic force: heterotypic layers of cocultured hepatocytes and endothelial cells. Tissue Eng. 10, 833–840 (2004)
E.A. Lee, H. Yim, J. Heo, H. Kim, G. Jung, N.S. Hwang, Application of magnetic nanoparticle for controlled tissue assembly and tissue engineering. Arch. Pharmacal Res. 37, 120–128 (2014)
Y. Gao, J. Lim, S.-H. Teoh, C. Xu, Emerging translational research on magnetic nanoparticles for regenerative medicine. Chem. Soc. Rev. 44, 6306–6329 (2015)
G.R. Souza, J.R. Molina, R.M. Raphael, M.G. Ozawa, D.J. Stark, C.S. Levin, L.F. Bronk, J.S. Ananta, J. Mandelin, M.-M. Georgescu, Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5, 291–296 (2010)
L.J. Santos, R.L. Reis, M.E. Gomes, Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering. Trends Biotechnol. 33, 471–479 (2015)
L. Borlido, A. Azevedo, A. Roque, M. Aires-Barros, Magnetic separations in biotechnology. Biotechnol. Adv. 31, 1374–1385 (2013)
I. Safarik, M. Safarikova, Magnetic techniques for the isolation and purification of proteins and peptides. BioMagn. Res. Technol. 2, 1–17 (2004)
P.A. Liberti, C.G. Rao, L.W. Terstappen, Optimization of ferrofluids and protocols for the enrichment of breast tumor cells in blood. J. Magn. Magn. Mater. 225, 301–307 (2001)
Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, R167 (2003)
A.H. Latham, M.E. Williams, Controlling transport and chemical functionality of magnetic nanoparticles. Acc. Chem. Res. 41, 411–420 (2008)
K. Hola, Z. Markova, G. Zoppellaro, J. Tucek, R. Zboril, Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol. Adv. 33, 1162–1176 (2015)
J. He, M. Huang, D. Wang, Z. Zhang, G. Li, Magnetic separation techniques in sample preparation for biological analysis: a review. J. Pharm. Biomed. Anal. 101, 84–101 (2014)
F. Wang, Y. Hu, C. Guo, W. Huang, C.-Z. Liu, Enhanced phenol degradation in coking wastewater by immobilized laccase on magnetic mesoporous silica nanoparticles in a magnetically stabilized fluidized bed. Bioresour. Technol. 110, 120–124 (2012)
M. Uyttendaele, I. Van Hoorde, J. Debevere, The use of immuno-magnetic separation (IMS) as a tool in a sample preparation method for direct detection of L. monocytogenes in cheese. Int. J. Food Microbiol. 54, 205–212 (2000)
J.R. Wisniewski, A. Zougman, N. Nagaraj, M. Mann, Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009)
M. Colombo, S. Carregal-Romero, M.F. Casula, L. Gutierrez, M.P. Morales, I.B. Boehm, J.T. Heverhagen, D. Prosperi, W.J. Parak, Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41, 4306–4334 (2012)
J.-C. Leroux, Injectable nanocarriers for biodetoxification. Nat. Nanotechnol. 2, 679–684 (2007)
M.D. Kaminski, A.J. Rosengart, Detoxification of blood using injectable magnetic nanospheres: a conceptual technology description. J. Magn. Magn. Mater. 293, 398–403 (2005)
M. Rahman, A.A. Saei, H. Amiri, M. Mahmoudi, Biomedical applications of superparamagnetic nanoparticles in molecular scale. Curr. Org. Chem. 19, 982–990 (2015)
L. Wang, Z. Yang, J. Gao, K. Xu, H. Gu, B. Zhang, X. Zhang, B. Xu, A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J. Am. Chem. Soc. 128, 13358–13359 (2006)
J.-J. Lee, K.J. Jeong, M. Hashimoto, A.H. Kwon, A. Rwei, S.A. Shankarappa, J.H. Tsui, D.S. Kohane, Synthetic ligand-coated magnetic nanoparticles for microfluidic bacterial separation from blood. Nano Lett. 14, 1–5 (2013)
H. Lee, T.J. Yoon, R. Weissleder, Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system. Angew. Chem. Int. Ed. 48, 5657–5660 (2009)
K. El-Boubbou, C. Gruden, X. Huang, Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. J. Am. Chem. Soc. 129, 13392–13393 (2007)
S. Ryan, A.J. Kell, H. van Faassen, L.-L. Tay, B. Simard, R. MacKenzie, M. Gilbert, J. Tanha, Single-domain antibody-nanoparticles: promising architectures for increased Staphylococcus aureus detection specificity and sensitivity. Biocon. Chem. 20, 1966–1974 (2009)
C. Kaittanis, S.A. Naser, J.M. Perez, One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Lett. 7, 380–383 (2007)
S. Pal, E.C. Alocilja, Electrically active polyaniline coated magnetic (EAPM) nanoparticle as novel transducer in biosensor for detection of Bacillus anthracis spores in food samples. Biosens. Bioelectron. 24, 1437–1444 (2009)
J. Gao, H. Gu, B. Xu, Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res. 42, 1097–1107 (2009)
H. Gu, K. Xu, C. Xu, B. Xu, Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun. 9, 941–949 (2006)
Q. Liu, J. Shi, M. Cheng, G. Li, D. Cao, G. Jiang, Preparation of graphene-encapsulated magnetic microspheres for protein/peptide enrichment and MALDI-TOF MS analysis. Chem. Commun. 48, 1874–1876 (2012)
H. Chen, D. Qi, C. Deng, P. Yang, X. Zhang, Preparation of C60-functionalized magnetic silica microspheres for the enrichment of low-concentration peptides and proteins for MALDI-TOF MS analysis. Proteomics 9, 380–387 (2009)
J.S. Kim, C.A. Valencia, R. Liu, W. Lin, Highly-efficient purification of native polyhistidine-tagged proteins by multivalent NTA-modified magnetic nanoparticles. Biocon. Chem. 18, 333–341 (2007)
S. Mazzucchelli, M. Colombo, C. De Palma, A. Salvade, P. Verderio, M.D. Coghi, E. Clementi, P. Tortora, F. Corsi, D. Prosperi, Single-domain protein A-engineered magnetic nanoparticles: toward a universal strategy to site-specific labeling of antibodies for targeted detection of tumor cells. ACS Nano 4, 5693–5702 (2010)
H. Cai, X. Gu, M.S. Scanlan, C.R. Lively, Development of a quantitative PCR assay for residual mouse DNA and comparison of four sample purification methods for DNA isolation. J. Pharm. Biomed. Anal. 55, 71–77 (2011)
D. Leung, S.O. Kang, E.V. Anslyn, Rapid determination of enantiomeric excess: a focus on optical approaches. Chem. Soc. Rev. 41, 448–479 (2012)
J.W. Hong, V. Studer, G. Hang, W.F. Anderson, S.R. Quake, A nanoliter-scale nucleic acid processor with parallel architecture. Nat. Biotechnol. 22, 435–439 (2004)
A. Soozanipour, A. Taheri-Kafrani, A.L. Isfahani, Covalent attachment of xylanase on functionalized magnetic nanoparticles and determination of its activity and stability. Chem. Eng. J. 270, 235–243 (2015)
K. Khoshnevisan, A.-K. Bordbar, D. Zare, D. Davoodi, M. Noruzi, M. Barkhi, M. Tabatabaei, Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem. Eng. J. 171, 669–673 (2011)
M. Pečová, M. Šebela, Z. Markova, K. Polakova, J. Čuda, K. Šafářová, R. Zbořil, Thermostable trypsin conjugates immobilized to biogenic magnetite show a high operational stability and remarkable reusability for protein digestion. Nanotechnology 24, 125102 (2013)
C.-C. Yu, Y.-Y. Kuo, C.-F. Liang, W.-T. Chien, H.-T. Wu, T.-C. Chang, F.-D. Jan, C.-C. Lin, Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis. Biocon. Chem. 23, 714–724 (2012)
S. Metz, G. Bonaterra, M. Rudelius, M. Settles, E.J. Rummeny, H.E. Daldrup-Link, Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur. Radiol. 14, 1851–1858 (2004)
J.W. Bulte, Magnetic nanoparticles as markers for cellular MR imaging. J. Magn. Magn. Mater. 289, 423–427 (2005)
C. Zhang, T. Liu, J. Gao, Y. Su, C. Shi, Recent development and application of magnetic nanoparticles for cell labeling and imaging. Mini Rev. Med. Chem. 10, 194–203 (2010)
A.S. Arbab, G.T. Yocum, H. Kalish, E.K. Jordan, S.A. Anderson, A.Y. Khakoo, E.J. Read, J.A. Frank, Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104, 1217–1223 (2004)
J.W. Bulte, T. Douglas, B. Witwer, S.-C. Zhang, E. Strable, B.K. Lewis, H. Zywicke, B. Miller, P. van Gelderen, B.M. Moskowitz, Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 19, 1141–1147 (2001)
C.C. Berry, Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 42, 224003 (2009)
J.K. Herr, J.E. Smith, C.D. Medley, D. Shangguan, W. Tan, Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem. 78, 2918–2924 (2006)
J.E. Jaetao, K.S. Butler, N.L. Adolphi, D.M. Lovato, H.C. Bryant, I. Rabinowitz, S.S. Winter, T.E. Tessier, H.J. Hathaway, C. Bergemann, Enhanced leukemia cell detection using a novel magnetic needle and nanoparticles. Cancer Res. 69, 8310–8316 (2009)
T. Kekarainen, S. Mannelin, J. Laine, T. Jaatinen, Optimization of immunomagnetic separation for cord blood-derived hematopoietic stem cells. BMC Cell Biol. 7, 1–10 (2006)
K. Pantel, C. Alix-Panabières, S. Riethdorf, Cancer micrometastases. Nat. Rev. Clin. Oncol. 6, 339–351 (2009)
V.I. Shubayev, T.R. Pisanic, S. Jin, Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev. 61, 467–477 (2009)
X. Chen, S.T. Wong, Cancer theranostics: An introduction. Cancer Theranostics, Chap. 1, 3–8 (2014)
B.T. Luk, L. Zhang, Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl. Mater. Interfaces 6, 21859–21873 (2014)
M. Zheng, S. Liu, J. Li, D. Qu, H. Zhao, X. Guan, X. Hu, Z. Xie, X. Jing, Z. Sun, Integrating oxaliplatin with highly luminescent carbon dots: an unprecedented theranostic agent for personalized medicine. Adv. Mater. 26, 3554–3560 (2014)
S.D. Jo, S.H. Ku, Y.-Y. Won, S.H. Kim, I.C. Kwon, Targeted nanotheranostics for future personalized medicine: recent progress in cancer therapy. Theranostics 6, 1362–1377 (2016)
J. Xie, S. Lee, X. Chen, Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 62, 1064–1079 (2010)
L.Y. Rizzo, B. Theek, G. Storm, F. Kiessling, T. Lammers, Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr. Opin. Biotechnol. 24, 1159–1166 (2013)
T. Lammers, F. Kiessling, W.E. Hennink, G. Storm, Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol. Pharm. 7, 1899–1912 (2010)
A. Radomska, J. Leszczyszyn, M.W. Radomski, The nanopharmacology and nanotoxicology of nanomaterials: new opportunities and challenges. Adv. Clin. Exp. Med. Off. Organ Wroclaw Med. Univ. 25, 151 (2016)
S.M. Janib, A.S. Moses, J.A. MacKay, Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 62, 1052–1063 (2010)
B.T. Luk, R.H. Fang, L. Zhang, Lipid-and polymer-based nanostructures for cancer theranostics. Theranostics 2, 1117–1126 (2012)
M.S. Muthu, D.T. Leong, L. Mei, S.-S. Feng, Nanotheranostics-application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4, 660–677 (2014)
T.H. Kim, S. Lee, X. Chen, Nanotheranostics for personalized medicine. Expert Rev. Mol. Diagn. 13, 257–269 (2013)
Z.-P. Liang, P.C. Lauterbur, Principles of Magnetic Resonance Imaging: A Signal Processing Perspective (The Institute of Electrical and Electronics Engineers Press, 2000)
J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances (SPIE Bellingham, WA, 2009)
M.E. Phelps, Positron emission tomography provides molecular imaging of biological processes. Proc. Natl. Acad. Sci. 97, 9226–9233 (2000)
T.A. Holly, B.G. Abbott, M. Al-Mallah, D.A. Calnon, M.C. Cohen, F.P. DiFilippo, E.P. Ficaro, M.R. Freeman, R.C. Hendel, D. Jain, Single photon-emission computed tomography. J. Nucl. Cardiol. 17, 941–973 (2010)
C.R. Hill, J.C. Bamber, G. ter Haar, Physical Principles of Medical Ultrasonics (Wiley Online Library, 2004)
M. Gu, Advanced Optical Imaging Theory (Springer Science & Business Media, 2000)
G. Bao, S. Mitragotri, S. Tong, Multifunctional nanoparticles for drug delivery and molecular imaging. Annu. Rev. Biomed. Eng. 15, 253–282 (2013)
Y. Bao, T. Wen, A.C.S. Samia, A. Khandhar, K.M. Krishnan, Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. J. Mater. Sci. 51, 513–553 (2016)
N.A. Frey, S. Peng, K. Cheng, S. Sun, Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38, 2532–2542 (2009)
T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, B. Von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293, 483–496 (2005)
M.F. Kircher, J.K. Willmann, Molecular body imaging: MR imaging, CT, and US. Part I. Principles. Radiology 263, 633–643 (2012)
J.K. Willmann, N. van Bruggen, L.M. Dinkelborg, S.S. Gambhir, Molecular imaging in drug development. Nat. Rev. Drug Discov. 7, 591–607 (2008)
N. Lee, T. Hyeon, Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem. Soc. Rev. 41, 2575–2589 (2012)
N. Lee, D. Yoo, D. Ling, M.H. Cho, T. Hyeon, J. Cheon, Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 115, 10637–10689 (2015)
Z.R. Stephen, F.M. Kievit, M. Zhang, Magnetite nanoparticles for medical MR imaging. Mater. Today 14, 330–338 (2011)
P. Gatehouse, G. Bydder, Magnetic resonance imaging of short T2 components in tissue. Clin. Radiol. 58, 1–19 (2003)
M.M. Britton, Magnetic resonance imaging of chemistry. Chem. Soc. Rev. 39, 4036–4043 (2010)
P. Caravan, C.T. Farrar, L. Frullano, R. Uppal, Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium-and manganese-based T1 contrast agents. Contrast Media Mol. Imaging 4, 89–100 (2009)
Y.W. Jun, J.H. Lee, J. Cheon, Chemical design of nanoparticle probes for high‐performance magnetic resonance imaging. Angewandte Chemie International Edition, 47, 5122–5135 (2008)
M.K. Uchiyama, S.H. Toma, S.F. de Paula Rodrigues, A.L.B. Shimada, R.A. Loiola, H.J.C. Rodríguez, P.V. Oliveira, M.S. Luz, S.R. Rabbani, H.E. Toma, Ultrasmall cationic superparamagnetic iron oxide nanoparticles as nontoxic and efficient MRI contrast agent and magnetic-targeting tool. Int. J. Nanomed. 10, 4731–4746 (2015)
P. Reimer, T. Balzer, Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur. Radiol. 13, 1266–1276 (2003)
J.R. McCarthy, R. Weissleder, Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 60, 1241–1251 (2008)
M. Longmire, P.L. Choyke, H. Kobayashi, Clearance Properties of Nano-Sized Particles and Molecules as Imaging Agents: Considerations and Caveats (2008)
E. Taboada, E. Rodríguez, A. Roig, J. Oró, A. Roch, R.N. Muller, Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir 23, 4583–4588 (2007)
M. Di Marco, C. Sadun, M. Port, I. Guilbert, P. Couvreur, C. Dubernet, Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int. J. Nanomed. 2, 609 (2007)
D. Artemov, N. Mori, B. Okollie, Z.M. Bhujwalla, MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn. Reson. Med. 49, 403–408 (2003)
W. Wu, Z. Wu, T. Yu, C. Jiang, W.-S. Kim, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16, 023501 (2016)
J.M. Perez, L. Josephson, R. Weissleder, Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. ChemBioChem 5, 261–264 (2004)
R. Jin, B. Lin, D. Li, H. Ai, Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr. Opin. Pharmacol. 18, 18–27 (2014)
A. Neuwelt, N. Sidhu, C.-A.A. Hu, G. Mlady, S.C. Eberhardt, L.O. Sillerud, Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. AJR Am. J. Roentgenol. 204, W302–W313 (2015)
A. Millon, S. Dickson, A. Klink, D. Izquierdo-Garcia, J. Bini, E. Lancelot, S. Ballet, P. Robert, J.M. de Castro, C. Corot, Monitoring plaque inflammation in atherosclerotic rabbits with an iron oxide (P904) and 18 F-FDG using a combined PET/MR scanner. Atherosclerosis 228, 339–345 (2013)
M.J. Jacobin-Valat, K. Deramchia, S. Mornet, C.E. Hagemeyer, S. Bonetto, R. Robert, M. Biran, P. Massot, S. Miraux, S. Sanchez, MRI of inducible P-selectin expression in human activated platelets involved in the early stages of atherosclerosis. NMR Biomed. 24, 413–424 (2011)
M.A. Busquets, R. Sabaté, J. Estelrich, Potential applications of magnetic particles to detect and treat Alzheimer’s disease. Nanoscale Res. Lett. 9, 1–10 (2014)
M.M. Vellinga, R.D.O. Engberink, A. Seewann, P.J. Pouwels, M.P. Wattjes, S.M. van der Pol, C. Pering, C.H. Polman, H.E. de Vries, J.J. Geurts, Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain 131, 800–807 (2008)
J. Xie, K. Chen, J. Huang, S. Lee, J. Wang, J. Gao, X. Li, X. Chen, PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 31, 3016–3022 (2010)
O. Veiseh, C. Sun, J. Gunn, N. Kohler, P. Gabikian, D. Lee, N. Bhattarai, R. Ellenbogen, R. Sze, A. Hallahan, Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett. 5, 1003–1008 (2005)
H. Lee, M.K. Yu, S. Park, S. Moon, J.J. Min, Y.Y. Jeong, H.-W. Kang, S. Jon, Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J. Am. Chem. Soc. 129, 12739–12745 (2007)
Y. Wang, X. Xie, X. Wang, G. Ku, K.L. Gill, D.P. O’Neal, G. Stoica, L.V. Wang, Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett. 4, 1689–1692 (2004)
M.J. Welch, C.J. Hawker, K.L. Wooley, The advantages of nanoparticles for PET. J. Nucl. Med. 50, 1743–1746 (2009)
N. Lee, S.H. Choi, T. Hyeon, Nano-Sized CT Contrast Agents. Adv. Mater. 25, 2641–2660 (2013)
S. Narayanan, B.N. Sathy, U. Mony, M. Koyakutty, S.V. Nair, D. Menon, Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging. ACS Appl. Mater. Interfaces 4, 251–260 (2011)
J. Liu, W. Zhang, H. Zhang, Z. Yang, T. Li, B. Wang, X. Huo, R. Wang, H. Chen, A multifunctional nanoprobe based on Au–Fe3O4 nanoparticles for multimodal and ultrasensitive detection of cancer cells. Chem. Commun. 49, 4938–4940 (2013)
Z. Liu, T. Lammers, J. Ehling, S. Fokong, J. Bornemann, F. Kiessling, J. Gätjens, Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging. Biomaterials 32, 6155–6163 (2011)
F. Kiessling, J. Huppert, M. Palmowski, Functional and molecular ultrasound imaging: concepts and contrast agents. Curr. Med. Chem. 16, 627–642 (2009)
R. Misra, S. Acharya, S.K. Sahoo, Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov. Today 15, 842–850 (2010)
U. Ikoba, H. Peng, H. Li, C. Miller, C. Yu, Q. Wang, Nanocarriers in therapy of infectious and inflammatory diseases. Nanoscale 7, 4291–4305 (2015)
O. Veiseh, B.C. Tang, K.A. Whitehead, D.G. Anderson, R. Langer, Managing diabetes with nanomedicine: challenges and opportunities. Nat. Rev. Drug Discov. 14, 45–57 (2015)
A.S. Gupta, Nanomedicine approaches in vascular disease: a review, Nanomedicine: Nanotechnology. Biol. Med. 7, 763–779 (2011)
S. Roussakow, The history of hyperthermia rise and decline, in Conference Papers in Science, Hindawi Publishing Corporation, 2013 (2013) p. 428027
O.S. Nielsen, M. Horsman, J. Overgaard, A future for hyperthermia in cancer treatment? Eur. J. Cancer 37, 1587–1589 (2001)
S. Mornet, S. Vasseur, F. Grasset, P. Veverka, G. Goglio, A. Demourgues, J. Portier, E. Pollert, E. Duguet, Magnetic nanoparticle design for medical applications. Prog. Solid State Chem. 34, 237–247 (2006)
P. Moroz, S. Jones, B. Gray, Magnetically mediated hyperthermia: current status and future directions. Int. J. Hyperth. 18, 267–284 (2002)
A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater. 225, 118–126 (2001)
A.E. Deatsch, B.A. Evans, Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 354, 163–172 (2014)
C.S. Kumar, F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63, 789–808 (2011)
M.F.X. Gnant, E.M. Turner, H.R. Alexander, Effects of hyperthermia and tumour necrosis factor on inflammatory cytokine secretion and procoagulant activity in endothelial cells. Cytokine 12, 339–347 (2000)
B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, H. Riess, The cellular and molecular basis of hyperthermia. Critical Rev. Oncol./Hematol. 43, 33–56 (2002)
E. Kita, T. Oda, T. Kayano, S. Sato, M. Minagawa, H. Yanagihara, M. Kishimoto, C. Mitsumata, S. Hashimoto, K. Yamada, Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy. J. Phys. D Appl. Phys. 43, 474011 (2010)
T.L. Kalber, K.L. Ordidge, P. Southern, M.R. Loebinger, P.G. Kyrtatos, Q.A. Pankhurst, M.F. Lythgoe, S.M. Janes, Hyperthermia treatment of tumors by mesenchymal stem cell-delivered superparamagnetic iron oxide nanoparticles. Int. J. Nanomed. 11, 1973–1983 (2016)
V.P. Torchilin, Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 13, 813–827 (2014)
M. Hans, A. Lowman, Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci. 6, 319–327 (2002)
O.C. Farokhzad, R. Langer, Impact of nanotechnology on drug delivery. ACS Nano 3, 16–20 (2009)
S.S. Suri, H. Fenniri, B. Singh, Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol. 2, 1–6 (2007)
H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Controlled Release 65, 271–284 (2000)
F. Danhier, O. Feron, V. Préat, To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Controlled Release 148, 135–146 (2010)
F. Chen, H. Hong, Y. Zhang, H.F. Valdovinos, S. Shi, G.S. Kwon, C.P. Theuer, T.E. Barnhart, W. Cai, In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano 7, 9027–9039 (2013)
O.C. Farokhzad, J. Cheng, B.A. Teply, I. Sherifi, S. Jon, P.W. Kantoff, J.P. Richie, R. Langer, Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. 103, 6315–6320 (2006)
M. Muthiah, I.-K. Park, C.-S. Cho, Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol. Adv. 31, 1224–1236 (2013)
B. Chertok, B.A. Moffat, A.E. David, F. Yu, C. Bergemann, B.D. Ross, V.C. Yang, Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29, 487–496 (2008)
O. Veiseh, J.W. Gunn, M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 62, 284–304 (2010)
A. Zarrin, S. Sadighian, K. Rostamizadeh, O. Firuzi, M. Hamidi, S. Mohammadi-Samani, R. Miri, Design, preparation, and in vitro characterization of a trimodally-targeted nanomagnetic onco-theranostic system for cancer diagnosis and therapy. Int. J. Pharm. 500, 62–76 (2016)
B. Polyak, G. Friedman, Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opin. Drug Deliv. 6, 53–70 (2009)
C. de las Heras Alarcón, S. Pennadam, C. Alexander, Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev. 34, 276–285 (2005)
J. Chomoucka, J. Drbohlavova, D. Huska, V. Adam, R. Kizek, J. Hubalek, Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 62, 144–149 (2010)
M. Mikhaylova, D.K. Kim, N. Bobrysheva, M. Osmolowsky, V. Semenov, T. Tsakalakos, M. Muhammed, Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20, 2472–2477 (2004)
S.K. Yen, P. Padmanabhan, S.T. Selvan, Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics 3, 986–1003 (2013)
L. Zhao, T. Chano, S. Morikawa, Y. Saito, A. Shiino, S. Shimizu, T. Maeda, T. Irie, S. Aonuma, H. Okabe, Hyperbranched polyglycerol-grafted superparamagnetic iron oxide nanoparticles: synthesis, characterization, functionalization, size separation, magnetic properties, and biological applications. Adv. Funct. Mater. 22, 5107–5117 (2012)
A.A. Moghanjoughi, D. Khoshnevis, A. Zarrabi, A concise review on smart polymers for controlled drug release. Drug Deliv. Transl. Res. 6, 333–340 (2016)
H. Mousavi, B. Movahedi, A. Zarrabi, M. Jahandar, A multifunctional hierarchically assembled magnetic nanostructure towards cancer nano-theranostics. RSC Adv. 5, 77255–77263 (2015)
N. Kamaly, A.D. Miller, Paramagnetic liposome nanoparticles for cellular and tumour imaging. Int. J. Mol. Sci. 11, 1759–1776 (2010)
N.G. Durmus, E.N. Taylor, K.M. Kummer, T.J. Webster, Enhanced efficacy of superparamagnetic iron oxide nanoparticles against antibiotic-resistant biofilms in the presence of metabolites. Adv. Mater. 25, 5706–5713 (2013)
J.H. Maeng, D.-H. Lee, K.H. Jung, Y.-H. Bae, I.-S. Park, S. Jeong, Y.-S. Jeon, C.-K. Shim, W. Kim, J. Kim, Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 31, 4995–5006 (2010)
F.M. Kievit, F.Y. Wang, C. Fang, H. Mok, K. Wang, J.R. Silber, R.G. Ellenbogen, M. Zhang, Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J. Controlled Release 152, 76–83 (2011)
O. Mykhaylyk, Y.S. Antequera, D. Vlaskou, C. Plank, Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat. Protoc. 2, 2391–2411 (2007)
S. Govindarajan, K. Kitaura, M. Takafuji, H. Ihara, K. Varadarajan, A.B. Patel, V. Gopal, Gene delivery into human cancer cells by cationic lipid-mediated magnetofection. Int. J. Pharm. 446, 87–99 (2013)
U. Schillinger, T. Brill, C. Rudolph, S. Huth, S. Gersting, F. Krötz, J. Hirschberger, C. Bergemann, C. Plank, Advances in magnetofection—magnetically guided nucleic acid delivery. J. Magn. Magn. Mater. 293, 501–508 (2005)
P. Jendelová, V. Herynek, J. DeCroos, K. Glogarová, B. Andersson, M. Hájek, E. Syková, Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn. Reson. Med. 50, 767–776 (2003)
D.K. Kirui, D.A. Rey, C.A. Batt, Gold hybrid nanoparticles for targeted phototherapy and cancer imaging. Nanotechnology 21, 105105 (2010)
M. Chu, Y. Shao, J. Peng, X. Dai, H. Li, Q. Wu, D. Shi, Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials 34, 4078–4088 (2013)
M. Thandu, V. Rapozzi, L. Xodo, F. Albericio, C. Comuzzi, S. Cavalli, “Clicking” porphyrins to magnetic nanoparticles for photodynamic therapy. ChemPlusChem 79, 90–98 (2014)
D.B. Tada, L.L. Vono, E.L. Duarte, R. Itri, P.K. Kiyohara, M.S. Baptista, L.M. Rossi, Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy. Langmuir 23, 8194–8199 (2007)
A.E. Fard, A. Zarepour, A. Zarrabi, A. Shanei, H. Salehi, Synergistic effect of the combination of triethylene-glycol modified Fe3O4 nanoparticles and ultrasound wave on MCF-7 cells. J. Magn. Magn. Mater. 394, 44–49 (2015)
H. Xu, X. Zhang, R. Han, P. Yang, H. Ma, Y. Song, Z. Lu, W. Yin, X. Wu, H. Wang, Nanoparticles in sonodynamic therapy: state of the art review. RSC Advances 6, 50697–50705 (2016)
C. Tassa, S.Y. Shaw, R. Weissleder, Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc. Chem. Res. 44, 842–852 (2011)
H.-M. Yang, B.C. Oh, J.H. Kim, T. Ahn, H.-S. Nam, C.W. Park, J.-D. Kim, Multifunctional poly (aspartic acid) nanoparticles containing iron oxide nanocrystals and doxorubicin for simultaneous cancer diagnosis and therapy. Colloids Surf., A 391, 208–215 (2011)
H. Xu, L. Cheng, C. Wang, X. Ma, Y. Li, Z. Liu, Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 32, 9364–9373 (2011)
M. Jahandar, A. Zarrabi, M.A. Shokrgozar, H. Mousavi, Synthesis, characterization and application of polyglycerol coated Fe3O4 nanoparticles as a nano-theranostics agent. Mater. Res. Express 2, 125002 (2015)
N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J.S. Guthi, S.-F. Chin, A.D. Sherry, D.A. Boothman, J. Gao, Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 6, 2427–2430 (2006)
H. Guo, W. Chen, X. Sun, Y.-N. Liu, J. Li, J. Wang, Theranostic magnetoliposomes coated by carboxymethyl dextran with controlled release by low-frequency alternating magnetic field. Carbohydr. Polym. 118, 209–217 (2015)
Q. Quan, J. Xie, H. Gao, M. Yang, F. Zhang, G. Liu, X. Lin, A. Wang, H.S. Eden, S. Lee, HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy. Mol. Pharm. 8, 1669–1676 (2011)
K. Cheng, S. Peng, C. Xu, S. Sun, Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin. J. Am. Chem. Soc. 131, 10637–10644 (2009)
C. Wang, S. Ravi, U.S. Garapati, M. Das, M. Howell, J. Mallela, S. Alwarappan, S.S. Mohapatra, S. Mohapatra, Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents. J. Mater. Chem. B 1, 4396–4405 (2013)
H. Yang, Y. Li, T. Li, M. Xu, Y. Chen, C. Wu, X. Dang, Y. Liu, Multifunctional core/shell nanoparticles cross-linked polyetherimide-folic acid as efficient Notch-1 siRNA carrier for targeted killing of breast cancer. Sci. Rep. 4, 7072 (2014)
M.K. Jaiswal, M. De, S.S. Chou, S. Vasavada, R. Bleher, P.V. Prasad, D. Bahadur, V.P. Dravid, Thermoresponsive magnetic hydrogels as theranostic nanoconstructs. ACS Appl. Mater. Interfaces 6, 6237–6247 (2014)
M.M. Yallapu, S.F. Othman, E.T. Curtis, B.K. Gupta, M. Jaggi, S.C. Chauhan, Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials 32, 1890–1905 (2011)
G.R. Reddy, M.S. Bhojani, P. McConville, J. Moody, B.A. Moffat, D.E. Hall, G. Kim, Y.-E.L. Koo, M.J. Woolliscroft, J.V. Sugai, Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin. Cancer Res. 12, 6677–6686 (2006)
K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, Z. Liu, Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater. 24, 1868–1872 (2012)
Z. Zhou, Y. Sun, J. Shen, J. Wei, C. Yu, B. Kong, W. Liu, H. Yang, S. Yang, W. Wang, Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 35, 7470–7478 (2014)
L. Cheng, K. Yang, Y. Li, X. Zeng, M. Shao, S.-T. Lee, Z. Liu, Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials 33, 2215–2222 (2012)
W. Dong, Y. Li, D. Niu, Z. Ma, J. Gu, Y. Chen, W. Zhao, X. Liu, C. Liu, J. Shi, Facile synthesis of monodisperse superparamagnetic Fe3O4 core@hybrid@Au shell nanocomposite for bimodal imaging and photothermal therapy. Adv. Mater. 23, 5392–5397 (2011)
H.-Y. Huang, S.-H. Hu, S.-Y. Hung, C.-S. Chiang, H.-L. Liu, T.-L. Chiu, H.-Y. Lai, Y.-Y. Chen, S.-Y. Chen, SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in vivo tumor therapy. J. Controlled Release 172, 118–127 (2013)
J. Huang, M. Guo, H. Ke, C. Zong, B. Ren, G. Liu, H. Shen, Y. Ma, X. Wang, H. Zhang, Rational Design and Synthesis of γFe2O3@Au Magnetic Gold Nanoflowers for Efficient Cancer Theranostics. Adv. Mater. 27, 5049–5056 (2015)
D. Calle, V. Negri, P. Ballesteros, S. Cerdán, Magnetoliposomes loaded with poly-unsaturated fatty acids as novel theranostic anti-inflammatory formulations. Theranostics (2015)
T. Fu, Q. Kong, H. Sheng, L. Gao, Value of functionalized superparamagnetic iron oxide nanoparticles in the diagnosis and treatment of acute temporal lobe epilepsy on MRI. Neural Plast. 2016, 2412958 (2016)
L. Moraes, A. Vasconcelos-dos-Santos, F.C. Santana, M.A. Godoy, P.H. Rosado-de-Castro, R.L. Azevedo-Pereira, W.M. Cintra, E.L. Gasparetto, M.F. Santiago, R. Mendez-Otero, Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington’s disease. Stem Cell Res. 9, 143–155 (2012)
P. Wang, M.V. Yigit, Z. Medarova, L. Wei, G. Dai, C. Schuetz, A. Moore, Combined small interfering RNA therapy and in vivo magnetic resonance imaging in islet transplantation. Diabetes 60, 565–571 (2011)
N. Ahmed, H. Fessi, A. Elaissari, Theranostic applications of nanoparticles in cancer. Drug Discov. Today 17, 928–934 (2012)
C. von Zur, D.Von Muhlen, N. Elverfeldt, I. Bassler, B. Neudorfer, A. Steitz, H. Petri-Fink, C. Hofmann, K. Bode, Peter, Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b/CD18): implications on imaging of atherosclerotic plaques. Atherosclerosis 193, 102–111 (2007)
M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, K.A. Dawson, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. 105, 14265–14270 (2008)
A. Lesniak, A. Salvati, M.J. Santos-Martinez, M.W. Radomski, K.A. Dawson, C. Åberg, Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J. Am. Chem. Soc. 135, 1438–1444 (2013)
A.K. Gupta, M. Gupta, Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26, 1565–1573 (2005)
L.L. Muldoon, M. Sàndor, K.E. Pinkston, E.A. Neuwelt, Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor. Neurosurgery 57, 785–796 (2005)
M. Mahmoudi, A. Simchi, A. Milani, P. Stroeve, Cell toxicity of superparamagnetic iron oxide nanoparticles. J. Colloid Interface Sci. 336, 510–518 (2009)
F. Dilnawaz, S.K. Sahoo, Therapeutic approaches of magnetic nanoparticles for the central nervous system. Drug Discovery Today 20, 1256–1264 (2015)
G. Huang, H. Chen, Y. Dong, X. Luo, H. Yu, Z. Moore, E.A. Bey, D.A. Boothman, J. Gao, Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics 3, 116–126 (2013)
L. Zeng, Z. Shen, A. Wu, Magnetic nanomaterials for tumor targeting theranostics. Nanomater. Tumor Targ. Theranostics: A Proact. Clin. Perspect. (2016) 55
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2017 The Author(s)
About this chapter
Cite this chapter
Zarepour, A., Zarrabi, A., Khosravi, A. (2017). SPIONs as Nano-Theranostics Agents. In: SPIONs as Nano-Theranostics Agents. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-10-3563-0_1
Download citation
DOI: https://doi.org/10.1007/978-981-10-3563-0_1
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-3562-3
Online ISBN: 978-981-10-3563-0
eBook Packages: EngineeringEngineering (R0)