Skip to main content

Properties of Pulse Current GMA Weld

  • Chapter
  • First Online:
Pulse Current Gas Metal Arc Welding

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

  • 887 Accesses

Abstract

The influence of pulse parameters on the properties of P-GMA welds of ferrous and non ferrous metals which qualifies them for various applications under the static and dynamic loading has been discussed. Control of pulse parameters affecting the various properties is addressed in terms of the factor ϕ. The hardness and tensile properties of weld joints are categorically addressed for the weld deposit and HAZ relevantly with respect to their chemistry and microstructure . The effect of pulse parameters on the properties such as toughness, fatigue, fracture mechanics and corrosion that dictate the safety and durability of weld joint in service has also been relevantly discussed in reference to the weld geometry , chemistry, microstructure and fracture behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Potluri, N.B., Ghosh, P.K., Gupta, P.C., Reddy, Y.S.: Studies on weld metal characteristics and their influence on tensile and fatigue properties of pulse current GMA welded Al–Zn–Mg alloy. Weld. J. 75(2), 62s–70s (1996)

    Google Scholar 

  2. Ghosh, P.K., Rai, B.K.: Characteristics of pulsed current bead on plate deposit in flux cored GMAW process. ISIJ Int. 36(8), 1036–1045 (1996)

    Article  Google Scholar 

  3. Ghosh, P.K., Rai, B.K.: Correlations of pulse parameters and bead characteristics in pulsed current flux cored GMAW process. Ind. Weld. J. 31(4), 30–39 (1998)

    Google Scholar 

  4. Ghosh, P.K., Gupta, P.C., Somani, R.: Influence of pulse parameters on bead geometry and HAZ during bead on plate deposition by MIG welding process. Z. Metallkd. 82(10), 756–762 (1991)

    Google Scholar 

  5. Gupta, P.C, Ghosh, P.K, Visa, S.: Influence of pulse frequency on the properties of HAZ in pulsed MIG welded Al–Zn–Mg alloy. In: Proceedings of International Conference on Welding Technology in developing countries present status and future needs, 1-71-77, 26–28 Sept 1988

    Google Scholar 

  6. Shackleton, D.N., Lucas, W.: Shielding gas mixtures for high quality mechanized GMA welding of Q&T steels. Weld. J. 53(12), 537s–547s (1974)

    Google Scholar 

  7. Ghosh, P.K., Gupta, S.R., Randhawa, H.S.: Characteristics and criticality of pulsed current vertical up GMA weld in steel. Int. J. Join. Mater. 11(4), 99–110 (1999)

    Google Scholar 

  8. Pintard, J.: Some experimental data on short circuit transfer, in Physics of the Welding Arc. Institute of welding, London (1966)

    Google Scholar 

  9. Holmes, A.W, Rogerson, J.H.: Welding problema peculiar to 7rxx Alloys. Weld. Met. Fab. 34(9), 349 (1986)

    Google Scholar 

  10. Needham, J.C.: Pulse controlled consumable electrode welding arcs. Brit. Weld. J. 12(12), 191 (1965)

    Google Scholar 

  11. Pearson, W.B.: Hand Book of Lattice Spacing and Structures of Metals. Pergamon Press, London, vol. 2, 574 (1967)

    Google Scholar 

  12. Pires, I., Quintino, L., Miranda, R.M.: Mater. Des. 28, 1623–1631 (2007)

    Article  Google Scholar 

  13. Ghosh, P.K., Gupta, S.R., Gupta, P.C., Rathi, R.: Fatigue characteristics of pulsed MIG welded Al–Zn–Mg alloy. J. Mat. Sci. 26, 6161–6170 (1991)

    Article  Google Scholar 

  14. Ghosh, P.K., Ghosh, A.K.: Control of residual stresses affecting fatigue life of pulsed current gas-metal-rc weld of high-strength aluminum alloy. Met. Mat. Trans. A 35A, 1–6 (2004)

    Google Scholar 

  15. Bagryanskii, K.V., Royanov, V.A.: Svar. Proiz. 10, 23–24 (1968)

    Google Scholar 

  16. Hertzberg, R.W.: Deformation and fracture mechanics of engineering materials, 2nd edn. Wiley, New York (1983)

    Google Scholar 

  17. Ritchie, R.O.: Why ductile fracture mechanics? Trans. ASME, J. Eng. Mater. Technol. 105(January), 1–7 (1983)

    Article  Google Scholar 

  18. Paris, P.C., Tada, H., Zahoor, A., Ernst, H.: Instability of the tearing model of elastic-plastic crack growth. In: Proceedings of Symposium on Elastic-Plastic Fracture, ASTM STP (2nd edn.), 668(5), 5–36 (1979)

    Google Scholar 

  19. Hutchinson, J.W., Paris, P.C.: Stability analysis of J-controlled crack growth. Elast. Plast. Fract. ASTM STP 668, 37–64 (1979)

    Article  Google Scholar 

  20. Ernst, H., Paris, P.C., Rossow, M., Hutchinson, J.W.: Fracture mechanics. ASTM STP 677, 581–599 (1979)

    Google Scholar 

  21. Paris, P.C., Gomez, M.P., Anderson, W.E.: A rational analytic theory of fatigue. Trend Eng. 13(1), 9–14 (1961)

    Google Scholar 

  22. Dong, L., Haynes, R., Atluri, Satya N.: On improving the celebrated paris’ power law for fatigue, by using moving least squares. CMC, Comput. Mater. Continua. 45(1), 1–15, (2015)

    Google Scholar 

  23. Forman, R.G., Kearney, V.E., Engle, R.M.: Numerical analysis of crack propagation in cyclic-loaded structures. J. Basic Eng. 89(3), 459–463 (1967)

    Article  Google Scholar 

  24. Donahue, R.J., Clark, H.M., Atanmo, P., Kumble, R., McEvily, A.J.: Crack opening displacement and the rate of fatigue crack growth. Int. J. Fract. Mech. 8(2), 209–219 (1972)

    Article  Google Scholar 

  25. Donald, J.K., Bray, G.H., Bush, R.W.: An evaluation of the adjusted compliance ratio technique for determining the effective stress intensity factor. In: Panontin T.L. and Sheppard, S.D. (eds.) Fatigue and Fracture Mechanics: 29th National Symposium on Fatigue and Fracture Mechanics, ASTM STP 1332, ASTM, West Conshohocken, PA (1998)

    Google Scholar 

  26. Amzallag, C., Rabbe, P., Bathias, C., Benoit, D., Truchon, M.: Influence of various parameters on the determination of the fatigue crack arrest threshold. In: Hudak, Jr. S.J., Bucci, R.J. (eds.) Fatigue Crack Growth Measurement and Data Analysis, ASTM STP 738, ASTM, 29–44 (1981)

    Google Scholar 

  27. Forth, S.C., Herman, D.J., James, M.A.: Fatigue crack growth rate and stress-intensity factor corrections for out-of-plane crack growth. In: Daniewicz, S.R., Newman, J.C. Jr., Schwalbe, K.H. (eds.) Fatigue and Fracture Mechanics: 34th Volume, ASTM STP 1461, ASTM International, West Conshohocken, PA (2004)

    Google Scholar 

  28. Ghosh, P.K., Dorn, L., Issler, L.: Fatigue crack growth behaviour of pulsed current MIG weld of Al–Zn–Mg alloy. Int. J. Joining of Mater. 6(4), 163–168 (1994)

    Google Scholar 

  29. Hussain, H.M., Ghosh, P.K., Gupta, P.C., Potluri, N.B.: Fracture toughness of pulse current multipass GMA weld of Al–Zn–Mg alloy. Int. J. Joining of Mater. 11(3), 77–88 (1999)

    Google Scholar 

  30. Hussain, H.M., Ghosh, P.K., Gupta, P.C.: Potluri Nagesh Babu: Fatigue crack growth properties of pulse current multipass MIG weld of Al–Zn–Mg alloy. Trans. Ind. Inst. Met. 50(4), 275–285 (1997)

    Google Scholar 

  31. Tiwary, M.: Studies on influence of pulse parameters on FCGR and fracture toughness behaviour of pulse current MIG welded Al–Zn–Mg alloy. Master’s dissertation, Department of Mechanical & Industrial Engineering, University of Roorkee, (1995)

    Google Scholar 

  32. Potluri, N.B., Ghosh, P.K., Gupta, P.C., Reddy, Y.S.: Pulsed current GMA welding: a technique to improve fracture toughness of Al–Zn–Mg alloy weldments. In: Proceedings of International Welding Conference (IWC 99), Welding and Allied Technology Challenges in 21st Century, New Delhi, 732–740 15–17 Feb 1999

    Google Scholar 

  33. Barbagallo, S., Cerri, E.: Evaluation of the KIC and JIC fracture parameters in a sand cast AZ91 magnesium alloy. Eng. Fail. Anal. 11(1), 127–140 (2004)

    Article  Google Scholar 

  34. Ogle, M., Blewett, R.V.: Weld quality, inspection and acceptance specification recommended by BS 8118, part 2. In: Proceedings of International Conference on Aluminium Weldments, 5th INALCO 92, Munich, 7.1.1–7.1.31 27–29 April 1992

    Google Scholar 

  35. Ghosh, P.K., Dorn, L., Issler, L.: Fatigue crack growth behaviour of pulsed current MIG weld of AI–Zn–Mg alloy; Int. J. Join. Mater. 6(4), 163 (1999)

    Google Scholar 

  36. Newman, J.C., Raju, I.S.: Stress-intensity factors for internal surface cracks in cylindrical pressure-vessels. J. Press. Vessel Technol. Trans. ASME 102, 342–346 (1980)

    Article  Google Scholar 

  37. Kulkarni, S.G.:, Effect of narrow gap welding on characteristics of weld joint of austenitic stainless steel. Ph.D. Thesis, Indian Institute of Technology Roorkee, India (2009)

    Google Scholar 

  38. Mathivanan, A., Senthilkumar, A., Devakumaran, K.: Pulsed current and dual pulse gas metal arc welding of grade AISI: 310S austenitic stainless steel. Defence Technol. 11(3), 269–274 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakriti Kumar Ghosh .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ghosh, P.K. (2017). Properties of Pulse Current GMA Weld. In: Pulse Current Gas Metal Arc Welding. Materials Forming, Machining and Tribology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3557-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3557-9_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3556-2

  • Online ISBN: 978-981-10-3557-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics