Skip to main content

Development and Anatomy of the Bile Duct

  • Chapter
  • First Online:
Pathology of the Bile Duct

Abstract

The bile duct system is a pathway of bile transportation from the liver to the intestine and plays a role of exocrine function of the liver. It consists of two different types of epithelial cells, hepatocytes and cholangiocytes. Anatomically as well as developmentally, the bile duct could be divided into intrahepatic bile duct (IHBD) and extrahepatic bile duct (EHBD; extrahepatic hepatic duct, gallbladder, cystic duct, and common bile duct) system. Initially, the secreted bile is transported through the apical side of hepatocytes called as bile canaliculus and then transferred to the duct system (IHBD and EHBD). EHBD characteristically develops the peribiliary glands (PBGs) which are suggested to be a niche of progenitor cell for the hepatobiliary system. Recent studies have revealed that development of IHBD and EHBD is differently regulated during developmental stage of the liver. EHBD arises from a part of the pancreatobiliary domain of foregut endodermal epithelium. In contrast, IHBD develops from the hepatoblasts inhabiting in the fetal liver as a common progenitor cell for hepatocytes and cholangiocytes. In this chapter, we first show histology of the bile duct system and review recent advances in the regulatory mechanisms of both IHBD and EHBD development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoniou A, Raynaud P, Cordi S, Zong Y, Tronche F, Stanger BZ, Jacquemin P, Pierreux CE, Clotman F, Lemaigre FP. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology. 2009;136:2325–33.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bort R, Martinez-Barbera JP, Beddington RSP, Zaret KS. Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development. 2004;131:797–806.

    Article  CAS  PubMed  Google Scholar 

  3. Boyer JL. Bile formation and secretion. Compr Physiol. 2013;3:1035–78.

    PubMed  PubMed Central  Google Scholar 

  4. Calmont A, Wandzioch E, Tremblay KD, Minowada G, Kaestner KH, Martin GR, Zaret KS. An FGF response pathway that mediates hepatic gene induction in embryonic endoderm cells. Dev Cell. 2006;11:339–48.

    Article  CAS  PubMed  Google Scholar 

  5. Cardinale V, Wang Y, Carpino G, Gui C-B, Manuela G, Rossi M, Berloco PB, Cantafora A, Wauthier E, Furth ME, Inverardi L, Dominguez-Bendala J, Ricordi C, Gerber D, Gaudio E, Alvaro D, Reid L. Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes, and pancreatic islets. Hepatology. 2011;54:2159–72.

    Article  CAS  PubMed  Google Scholar 

  6. Cardinale V, Wang Y, Carpino G, Mendel G, Alpini G, Gaudio E, Reid LM, Alvaro D. The biliary tree – a reservoir of multipotent stem cells. Nat Rev Gastroenterol Hepatol. 2012;9:231–40.

    Article  CAS  PubMed  Google Scholar 

  7. Carpentier R, Suner RE, Hul NV, Kopp JL, Beaudry J-B, Cordi S, Antoniou A, Raynaud P, Lepreux S, Jacquemin P, Leclercq IA, Sander M, Lemaigre FP. Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes and adult liver progenitor cells. Gastroenterology. 2011;141:1432–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carpino G, Cardinale V, Onori P, Franchitto A, Bartolomeo P, Berloco PB, Rossi M, Wang Y, Semeraro R, Anceschi M, Brunelli R, Alvaro D, Reid LM, Gaudio E. Biliary tree stem/progenitor cells in glands of extrahepatic and intrahepatic bile ducts: an anatomical in situ study yielding evidence of maturational lineages. J Anat. 2012;220:186–99.

    Article  PubMed  Google Scholar 

  9. Carpino G, Renzi A, Franchitto A, Cardinale V, Onori P, Reid L, Alvaro D, Gaudio E. Stem/progenitor cell niches involved in hepatic and biliary regeneration. Stem Cells Int. 2016;2016:3658013.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Clotman F, Lannoy VJ, Reber M, Cereghini S, Cassiman D, Jacquemin P, Roskams T, Rousseau GG, Lemaigre FP. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development. 2002;129:1819–28.

    CAS  PubMed  Google Scholar 

  11. Clotman F, Jacquemin P, Plumb-Rudewiez N, Pierreux CE, Van der Smissen P, Dietz HC, Courtoy PJ, Rousseau GG, Lemaigre FP. Control of liver cell fate decision by a gradient of TGFβ signaling modulated by Onecut transcription factors. Genes Dev. 2005;19:1849–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coffinier C, Gresh L, Fiette L, Tronche F, Schutz G, Babinet C, Pontoglio M, Yaniv M, Barra J. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1β. Development. 2002;129:1829–38.

    CAS  PubMed  Google Scholar 

  13. Cordi S, Godard C, Saandi T, Jacquemin P, Monga SP, Colnot S, Lemaigre FP. Role of β-catenin in development of bile ducts. Differentiation. 2016;91:42–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Decaens T, Godard C, de Reynies A, Rickman DS, Tronche F, Couty J-P, Perret C, Colnot S. Stabilization of β-catenin affects mouse embryonic liver growth and hepatoblast fate. Hepatology. 2008;47:247–58.

    Article  CAS  PubMed  Google Scholar 

  15. Deutsch G, Jung J, Zheng M, Lora J, Zaret KS. A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development. 2001;128:871–81.

    CAS  PubMed  Google Scholar 

  16. Falix FA, Weeda VB, Labruyere WT, Poncy A, de Waart DR, Hakvoort TBM, Lemaigre F, Gaemers IC, Aronson DC, Lamers WH. Hepatic notch2 deficiency leads to bile duct agenesis perinatally and secondary bile duct formation after weaning. Dev Biol. 2014;396:201–13.

    Article  CAS  PubMed  Google Scholar 

  17. Fukuda A, Kawaguchi Y, Furuyama K, Kodama S, Horiguchi M, Kuhara T, Koizumi M, Boyer DF, Fujimoto K, Doi R, Kageyama R, Wright CVE, Chiba T. Ectopic pancreas formation in Hes1-knockout mice reveals plasticity of endodermal progenitors of the gut, bile duct, and pancreas. J Clin Invest. 2006;116:1484–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Geisler F, Nagl F, Mazur PK, Lee M, Zimber-Strobl U, Strobl LJ, Radtke F, Schmid RM, Siveke JT. Liver-specific inactivation of notch2, but not notch1, compromises intrahepatic bile duct development in mice. Hepatology. 2008;48:607–16.

    Article  CAS  PubMed  Google Scholar 

  19. Gordillo M, Evans T, Gouon-Evans V. Orchestrating liver development. Development. 2015;142:2094–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gualdi R, Bossard P, Zheng M, Hamada Y, Coleman JR, Zaret KS. Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev. 1996;10:1670–82.

    Article  CAS  PubMed  Google Scholar 

  21. Healey JE, Schroy PC. Anatomy of the biliary ducts within the human liver. Arch Surg. 1953;66:599–616.

    Article  Google Scholar 

  22. Hofmann JJ, Zovein AC, Koh H, Radtke F, Weinmaster G, Iruela-Arispe ML. Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insight into Alagille syndrome. Development. 2010;137:4061–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hunter MP, Wilson CM, Jiang X, Cong R, Vasavada H, Kaestner KH, Bogue CW. The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. Dev Biol. 2007;308:355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jeliazkova P, Jors S, Lee M, Zimber-Strobl U, Ferrer J, Schmid RM, Siveke JT, Geisler F. Canonical notch2 signaling determines biliary cell fates of embryonic hepatoblasts and adult hepatocytes independent of Hes1. Hepatology. 2013;57:2469–79.

    Article  CAS  PubMed  Google Scholar 

  25. Jung J, Zheng M, Goldfarb M, Zaret KS. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science. 1999;284:1998–2003.

    Article  CAS  PubMed  Google Scholar 

  26. Kaneko K, Kamimoto K, Miyajima A, Itoh T. Adaptive remodeling of the biliary architecture underlies liver homeostasis. Hepatology. 2015;61:2056–66.

    Article  CAS  PubMed  Google Scholar 

  27. Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet. 2002;32:128–34.

    Article  CAS  PubMed  Google Scholar 

  28. Khan FM, Komarla AR, Mendoza PG, Bodenheimer HR, Theise ND. Keratin 19 demonstration of canal of Hering loss in primary biliary cirrhosis: “minimal change PBC”? Hepatology. 2013;57:700–7.

    Article  CAS  PubMed  Google Scholar 

  29. Kodama Y, Hijikata M, Kageyama R, Shimotohno K, Chiba T. The role of notch signaling in the development of intrahepatic bile ducts. Gastroenterology. 2004;127:1775–86.

    Article  CAS  PubMed  Google Scholar 

  30. Lanzoni G, Cardinale V, Carpino G. The hepatic, biliary, and pancreatic network of stem/progenitor cell niches in humans: a new reference frame for disease and regeneration. Hepatology. 2016;64:277–86.

    Article  PubMed  Google Scholar 

  31. Lee D-H, Park JO, Kim T-S, Kim S-K, Kim T-H, Kim M-H, Park GS, Kim J-H, Kuninaka S, Olson EN, Saya H, Kim S-Y, Lee H, Lim D-S. LATS-YAP/TAZ controls lineage specification by regulating TGFβ signaling and Hnf4α expression during liver development. Nat Commun. 2016;7:11961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lemaigre FP. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology. 2009;137:62–79.

    Article  CAS  PubMed  Google Scholar 

  33. Li L, Krantz ID, Deng Y, Genin A, Banta AB, Collins CC, Qi M, Trask BJ, Kuo WL, Cochran J, Costa T, Pierpont ME, Rand EB, Piccoli DA, Hood L, Spinner NB. Alagille syndrome is caused by mutations in human Jagged 1, which encodes a ligand for notch1. Nat Genet. 1997;16:243–51.

    Article  CAS  PubMed  Google Scholar 

  34. Li Z, White P, Tuteja G, Rubins N, Sackett S, Kaestner K. Foxa1 and Foxa2 regulate bile duct development in mice. J Clin Invest. 2009;119:1537–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ludtke TH-W, Christffels VM, Petry M, Kispert A. Tbx3 promotes liver bud expansion during mouse development by suppression of cholangiocyte differentiation. Hepatology. 2009;49:969–78.

    Article  PubMed  Google Scholar 

  36. Matsumoto K, Yoshitomi H, Rossant J, Zaret KS. Liver organogenesis prompted by endothelial cells prior to vascular function. Science. 2001;294:559–63.

    Article  CAS  PubMed  Google Scholar 

  37. McCright B, Lozier J, Gridley T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development. 2002;129:1075–82.

    CAS  PubMed  Google Scholar 

  38. McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet. 2006;79:169–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miyajima A, Tanaka M, Itoh T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell. 2014;14:561–74.

    Article  CAS  PubMed  Google Scholar 

  40. Monga SPS. Role and regulation of β-catenin signaling during physiological liver growth. Gene Expr. 2014;16:51–62.

    Article  PubMed  Google Scholar 

  41. Nagahama Y, Sone M, Chen X, Yamamoto M, Xin B, Matsuo Y, Komatsu M, Suzuki A, Enomoto K, Nishikawa Y. Contribution of hepatocytes and bile ductular cells in ductular reaction and remodeling of the biliary system after chronic liver injury. Am J Pathol. 2014;184:3001–12.

    Article  CAS  PubMed  Google Scholar 

  42. Nakanuma Y, Hoso M, Sanzen T, Sasaki M. Microstructure and development of the normal and pathologic biliary tract in humans, including blood supply. Microsc Res Tech. 1997;15:552–70.

    Article  Google Scholar 

  43. Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A, Piccoli DA, Meltzer PS, Spinner NB, Collins FS, Chandrasekharappa SC. Mutation in the human Jagged 1 gene are responsible for Alagille syndrome. Nat Genet. 1997;16:235–42.

    Article  CAS  PubMed  Google Scholar 

  44. Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, Hogan BLM, Wright CVE. PDX-1 is required for pancreatic outgrowth and differentiation on the rostral duodenum. Development. 1996;122:983–95.

    CAS  PubMed  Google Scholar 

  45. Oikawa T, Kamiya A, Kakinuma S, Zeniya M, Nishinakamura R, Tajiri H, Nakauchi H. Sall4 regulates cell fate decision in fetal hepatic stem/progenitor cells. Gastroenterology. 2009;136:1000–11.

    Article  CAS  PubMed  Google Scholar 

  46. Poncy A, Antoniou A, Cordi S, Pierreux CE, Jacquemin P, Lemaigre FP. Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts. Dev Biol. 2015;404:136–48.

    Article  CAS  PubMed  Google Scholar 

  47. Raynaud P, Carpentier R, Antoniou A, Lamaigre FP. Biliary differentiation and bile duct morphogenesis in development and disease. Int J Biochem Cell Biol. 2011a;43:245–56.

    Article  CAS  PubMed  Google Scholar 

  48. Raynaud P, Tan J, Callens C, Cordi S, Vandersmissen P, Carentier R, Sempoux C, Devuyst O, Pierreux CE, Courtoy P, Dahan K, Delbecque K, Lepreux S, Pontoglio M, Guay-Woodford LM, Lemaigre FP. A classification of ductal plate malformation based on distinct pathogenic mechanisms of biliary dysmorphogenesis. Hepatology. 2011b;53:1959–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rogler CE, LeVoci L, Ader T, Massimi A, Tchaikovskaya T, Norel R, Rogler LE. MicroRNA-23b cluster microRNA regulate transforming growth factor-β/bone morphogenetic protein signaling and liver stem cell differentiation by targeting Smads. Hepatology. 2009;50:575–84.

    Article  CAS  PubMed  Google Scholar 

  50. Roskams T, Desmet V. Embryology of extra- and intrahepatic bile ducts, the ductal plate. Anat Rec. 2008;291:628–35.

    Article  CAS  Google Scholar 

  51. Roskams TA, Theise ND, Balabaud C, Bhagat G, Bhathal PS, Bioulac-Sage P, Brunt EM, Crawford JM, Crosby HA, Desmet V, Finegold MJ, Geller SA, Gouw ASH, Hytiroglou P, Kinsely AS, Kojiro M, Lefkowitch JH, Nakanuma Y, Olynyk JK, Park YN, Portmann B, Saxena R, Scheuer PJ, Strain AJ, Thung SN, Wanless IR, West AB. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology. 2004;39:1739–45.

    Article  PubMed  Google Scholar 

  52. Rossi JM, Dunn NR, Hogan BLM, Zaret KS. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev. 2001;15:1998–2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saito Y, Kojima T, Takahashi N. The septum transversum mesenchyme induces gallbladder development. Biol Open. 2013;2:779–88.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Saxena R, Hytiroglou P, Thung SN, Theise ND. Destruction of canals of Hering in primary biliary cirrhosis. Hum Pathol. 2002;33:983–8.

    Article  PubMed  Google Scholar 

  55. Seth A, Ye J, Yu N, Guez F, Bedford DC, Neale GA, Cordi S, Brindle PK, Lemaigre FP, Kaestner KH, Sosa-Pineda B. Prox1 ablation in hepatic progenitors causes defective hepatocyte specification and increases bilary cell commitment. Development. 2014;141:538–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev Cell. 2010;18:175–89.

    Article  CAS  PubMed  Google Scholar 

  57. Shiojiri N. Development and differentiation of bile ducts in the mammalian liver. Microsc Res Tech. 1997;39:328–35.

    Article  CAS  PubMed  Google Scholar 

  58. Shiojiri N, Takeshita K, Yamasaki H, Iwata T. Suppression of C/EBP alpha expression in biliary cell differentiation from hepatoblasts during mouse liver development. J Hepatol. 2004;41:790–8.

    Article  CAS  PubMed  Google Scholar 

  59. Sone M, Nishikawa Y, Nagahama Y, Kumagai E, Doi Y, Omori Y, Yoshioka T, Tokairin T, Yoshida M, Sugiyama T, Enomoto K. Recovery of mature hepatocytic phenotype following bile ductular transdifferentiation of rat hepatocytes in vitro. Am J Pathol. 2012;181:2094–104.

    Article  CAS  PubMed  Google Scholar 

  60. Spence JR, Lange AW, Lin S-C, Kaestner KH, Lowy AM, Kim I, Whitsett JA, Wells JM. Sox17 regulates organ lineage segregation of ventral foregut progenitor cells. Dev Cell. 2009;17:62–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sumazaki R, Shiojiri N, Isoyama S, Masu M, Keino-Masu K, Osawa M, Nakauchi H, Kageyama R, Matsui A. Conversion of biliary system to pancreatic tissue in Hes1-deficient mice. Nat Genet. 2004;36:83–7.

    Article  CAS  PubMed  Google Scholar 

  62. Suzuki A, Zheng Y, Kaneko S, Onodera M, Fukao K, Nakauchi H, Taniguchi H. Clonal identification and characterization of self-renewing pluripotent stem cells in the developing liver. J Cell Biol. 2002;156:173–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Suzuki A, Sekiya S, Buscher D, Belmonte JCI, Taniguchi H. Tbx3 controls the fate of hepatic progenitor cells in liver development by suppressing p19ARF expression. Development. 2008;135:1589–95.

    Article  CAS  PubMed  Google Scholar 

  64. Takashima Y, Terada M, Kawabata M, Suzuki A. Dynamic three-dimensional morphogenesis of intrahepatic bile ducts in mouse liver development. Hepatology. 2015;61:1003–11.

    Article  PubMed  Google Scholar 

  65. Tan X, Yuan Y, Zeng G, Apte U, Thompson MD, Gieply B, Stolz DB, Michalopoulos GK, Kaestner KH, Monga SPS. β-catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development. Hepatology. 2008;47:1667–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tanimizu N, Miyajima A. Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. J Cell Sci. 2004;117:3165–74.

    Article  CAS  PubMed  Google Scholar 

  67. Tanimizu N, Kaneko K, Ichinohe N, Ishii M, Mizuguchi T, Hirata K, Miyajima A, Mitaka T. Intrahepatic bile ducts are developed through formation of homogeneous continuous luminal network and its dynamic rearrangement in mice. Hepatology. 2016;64:175–88.

    Article  CAS  PubMed  Google Scholar 

  68. Tchorz JS, Kinter J, Muller M, Tornillo L, Heim MH, Bettler B. Notch2 signaling promotes biliary epithelial cell fate specification and tubulogenesis during bile duct development in mice. Hepatology. 2009;50:871–9.

    Article  CAS  PubMed  Google Scholar 

  69. Tremblay KD, Zaret KS. Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev Biol. 2005;280:87–99.

    Article  CAS  PubMed  Google Scholar 

  70. Uemura M, Hara K, Shitara H, Ishii R, Tsunekawa N, Miura Y, Kurohmaru M, Taya C, Yonekawa H, Kanai-Azuma M, Kanai Y. Expression and function of mouse SOX17 gene in the specification of gallbladder/bile duct progenitors during early foregut morphogenesis. Biochem Biophys Res Commun. 2010;391:357–63.

    Article  CAS  PubMed  Google Scholar 

  71. Uemura M, Ozawa A, Nagata T, Kurasawa K, Tsunekawa N, Nobuhisa I, Taga T, Hara K, Kudo A, Kawakami H, Saijoh Y, Kurohmaru M, Kanai-Azuma M, Kanai Y. Sox17 haploinsufficiency results in perinatal biliary atresia and hepatitis in C57BL/6 background mice. Development. 2013;140:639–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vanderpool C, Sparks EE, Huppert KA, Gannon M, Means AL, Huppert SS. Genetic interaction between hepatocyte nuclear factor-6 and notch signaling regulate mouse intrahepatic bile duct development in vivo. Hepatology. 2012;55:233–43.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yamasaki H, Sada A, Iwata T, Niwa T, Tomizawa M, Xanthopoulos KG, Koike T, Shiojiri N. Suppression of C/EBPα expression in periportal hepatoblasts may stimulate biliary cell differentiation through increased HNF6 and HNF1b expression. Development. 2006;133:4233–43.

    Article  CAS  PubMed  Google Scholar 

  74. Zaret KS, Grompe M. Generation and regeneration of cells of the liver and pancreas. Science. 2008;322:490–4.

    Article  Google Scholar 

  75. Zong Y, Panikkar A, Xu J, Antoniou A, Raynaud P, Lemaigre F, Stanger BZ. Notch signaling controls liver development by regulation biliary differentiation. Development. 2009;136:1727–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zong Y, Stanger BZ. Molecular mechanisms of bile duct development. Int J Biochem Cell Biol. 2011;43:257–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko Enomoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Enomoto, K., Nishikawa, Y. (2017). Development and Anatomy of the Bile Duct. In: Nakanuma, Y. (eds) Pathology of the Bile Duct. Springer, Singapore. https://doi.org/10.1007/978-981-10-3500-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3500-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3499-2

  • Online ISBN: 978-981-10-3500-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics