Skip to main content

Management of Tomato Foot and Root Rot (TFRR) by Biocontrol Agents with Emphasis on Factors Affecting Its Effectiveness

  • Chapter
  • First Online:
  • 2004 Accesses

Abstract

Management of tomato foot and root rot (TFRR) caused by Fusarium oxysporum f. sp. radicis-lycopersici (FORL) could be achieved by biological methods which represent an ecologically friendly strategy for the sustainable crop productivity. Among these biological methods, those using biocontrol agents (BCAs) such as bacteria or fungi able to antagonize soilborne plant pathogens or stimulate plant defenses, leading to plant protection against diseases, are of great promise (de Waard et al. Annu Rev Phytopathol 31:403–421, 1993; El-Tarabily et al. New Phytol 137:495–507, 1997; El-Tarabily. Can J Bot 84:211–222, 2006). They also represent a suitable alternative to the use of chemical pesticides. Some of these antagonistic microorganisms living in association with tomato roots showing also beneficial effects on the plant growth and nutrition are called plant growth-promoting rhizobacteria (PGPR). Consequently, PGPRs could also be used as biofertilizers and are considered as an alternative tool to chemical fertilizers. In tomato, many rhizobacteria were reported to suppress diseases caused by Fusarium and/or to lead to growth promotion and tomato yield enhancement. However, BCAs are confronted to ecological parameters that are important to be determined if one wishes to succeed in disease management. The present chapter describes tomato foot and root rot (TFRR) and main mechanisms deployed by BCAs used to suppress the disease (competition by siderophore production, antibiosis, or induced systemic resistance). As the success of biocontrol methods depends largely on biotic and/or abiotic factors, some abiotic factors influencing the biocontrol agent’s fitness as well as biotic factors represented by BCA interactions with either tomato plants or FORL are discussed in relation to the performance of BCAs either in greenhouse trials and agricultural fields.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press, San Diego. 922 pp

    Google Scholar 

  • Attitalla IH, Fatehi J, Levenfors J, Brishammar S (2004) A rapid molecular method for differentiating two special forms (lycopersici and radicis -lycopersici) of Fusarium oxysporum. Mycol Res 108:787–794

    Article  CAS  PubMed  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant Microbe Interact 15:1147–1156

    Article  CAS  PubMed  Google Scholar 

  • Baker R (1991) Induction of rhizosphere competence in the biocontrol fungus Trichoderma In: Keister DL, Cregan PB (eds) The Rhizosphere and plant growth. Kluwer Acadamic Publishers, Dordrecht, pp 221–228

    Google Scholar 

  • Bakker PAHM, Raaijmakers JM, Bloemberg GV, Hofte M, Lemanceau P, Cooke M (2007) New perspectives and approaches in plant growth-promoting rhizobacteria research. Eur J Plant Pathol 119:241–242

    Article  Google Scholar 

  • Baysal Ö, Çalıskan M, Yesilova Ö (2008) An inhibitory effect of a new Bacillus subtilis strain (EU07) against Fusarium oxysporum f sp radicis -lycopersici. Physiol Mol Plant Pathol 73:25–32

    Article  Google Scholar 

  • Bell CH, Price N, Chakrabarti B (1996) The methyl bromide issue. Wiley, New York. 400 pp

    Google Scholar 

  • Benhamou N, Kloepper JW, Tuzun S (1998) Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204:153–168

    Article  CAS  Google Scholar 

  • Bloemberg GV (2007) Microscopic analysis of plant-bacterium interactions using auto fluorescent proteins. Eur J Plant Pathol 119:301–309

    Article  CAS  Google Scholar 

  • Bloemberg GV, Wijfjes AHM, Lamers GEM, Stuurman N, Lugtenberg BJJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant Microbe Interact 13:1170–1176

    Article  CAS  PubMed  Google Scholar 

  • Bolwerk A, Lugtenberg BJJ (2005) Visualization of interactions of microbial biocontrol agents and phytopathogenic fungus Fusarium oxysporum f.sp radicis lycopersici on tomato roots. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 217–231

    Google Scholar 

  • Bolwerk A, Lagopodi AL, Wijfjes AHM, Lamers GEM, Chin-A-Woeng TFC, Lugtenberg BJJ, Bloemberg GV (2003) Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis -lycopersici. Mol Plant Microbe Interact 16:983–993

    Article  CAS  PubMed  Google Scholar 

  • Bouizgarne B (2013) Bacteria for plant growth promotion and disease management. In Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer, Berlin, pp 15–47

    Google Scholar 

  • Bourbos VA, Michalopoulos G, Skoudriakis MT (1997) Lutte biologique contre Fusarium f. sp. radicis -lycopersici chez la tomate en serre non-chauffée. IOBC/WPRS Bull 20:58–62

    Google Scholar 

  • Brammall RA, Higgins VJ (1988) A histological comparison of fungal colonization in tomato seedlings susceptible or resistant to Fusarium crown and root rot disease. Can J Bot 66:915–925

    Article  Google Scholar 

  • Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of pyochelin and pyoverdine in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho MM (2001) Molecular characterization of the role of type 4 pili, NDH-I and PyrR in rhizosphere colonization of Pseudomonas fluorescens WCS365. PhD thesis, Leiden University, Leiden

    Google Scholar 

  • Chen C, Belanger RR, Benhamou N, Paulitz TC (2000) Defense enzymes induced in cucumber roots by treatment with plant growth promoting rhizobacteria (PGPR). Physiol Mol Plant Pathol 56:13–23

    Article  CAS  Google Scholar 

  • Chin-A-Woeng TFC, de Priester W, van der Bij AJ, Lugtenberg BJJ (1997) Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy. Mol Plant Microbe Interact 10:79–86

    Article  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, van der Bij AJ, van der Drift KMGM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, Tichy HV, de Bruijn FJ, Thomas-Oates JE, Lugtenberg BJJ (1998) Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis -lycopersici. Mol Plant Microbe Interact 1:1069–1077

    Article  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ (2000) Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe Interact 13:1340–1345

    Article  CAS  PubMed  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523

    Article  CAS  Google Scholar 

  • Datnoff L, Nemec S, Pernezny K (1995) Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol Control 5:427–431

    Article  Google Scholar 

  • De Brito Alvarez MA, Gagne S, Antoun H (1995) Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria. Appl Environ Microbiol 61:194–199

    Google Scholar 

  • de Waard MA, Georgopoulos SG, Hollomon DW, Ishii H, Leroux P, Ragsdale NN, Schwinn FJ (1993) Chemical control of plant diseases: problems and prospects. Annu Rev Phytopathol 31:403–421

    Article  Google Scholar 

  • Dekkers LC, van der Bij AJ, Mulders IHM, Phoelich CC, Wentwoord RAR, Glandorf DCM, Wijffelman CA, Lugtenberg BJJ (1998) Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and NADH: ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant Microbe Interact 11:763–771

    Article  CAS  PubMed  Google Scholar 

  • Dekkers LC, Mulders IHM, Phoelich CC, Chin-A-Woeng TFC, Wijfjes AHM, Lugtenberg BJJ (2000) Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f sp radicis -lycopersici. Mol Plant Microbe Interact 13:1177

    Article  CAS  PubMed  Google Scholar 

  • Duffy BK, Defago G (1997) Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87:1250–1257

    Article  CAS  PubMed  Google Scholar 

  • Duffy B, Christoph K, Défago G (2004) Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection. Appl Environ Microbiol 70:1836–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duijff BJ, Bakker PAHM, Schippers B (1994) Suppression of Fusarium wilt of carnation by Pseudomonas putida WCS358 at different levels of disease incidence and iron availability. Biocontrol Sci Technol 4:279–288

    Article  Google Scholar 

  • Duniway JM, Hao JJ, Dopkins DM, Ajwa H, Browne GT (2000) Some chemical, cultural, andbiological alternatives to methyl bromide fumigation of soil for Strawberry. In: Proceedings of the annual international research conference on methyl bromide alternatives and emissions reductions, Orlando, p 9

    Google Scholar 

  • Duss F, Moazfar A, Oertli JJ, Jaeggi W (1986) Effect of bacteria on the iron uptake by axenically-cultured roots of Fe-efficient and Fe-inefficient tomatoes (Lycopersicon esculentum Mill.) J Plant Nutr 9:587–598

    Article  Google Scholar 

  • El-Tarabily K (2006) Rhizosphere-competent isolates of streptomycete and non-streptomycete actinomycetes capable of producing cell-wall-degrading enzymes to control Pythium aphanidermatum damping-off disease of cucumber. Can J Bot 84:211–222

    Article  CAS  Google Scholar 

  • El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 308:161–174

    Article  CAS  Google Scholar 

  • El-Tarabily KA, Hardy GESJ, Sivasithamparam K, Hussein AM, Kurtböke ID (1997) The potential for the biological control of cavity spot disease of carrots caused by Pythium coloratum by Streptomycete and non-Streptomycete actinomycetes in Western Australia. New Phytol 137:495–507

    Article  Google Scholar 

  • Gagné S, Dehbi L, Le Quéré D, Cayer F, Morin J-L, Lemay R, Fournier N (1993) Increase of greenhouse tomato fruit yields by plant growth-promoting rhizobacteria (PGPR) inoculated into the peat-based growing media. Soil Biol Biochem 25:269–272

    Article  Google Scholar 

  • Gamalero E, Lingua G, Caprì FG, Fusconi A, Graziella B, Lemanceau P (2004) Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning electron microscopy. FEMS Microbiol Ecol 48:79–87

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Lingua G, Tombolini R, Avidano L, Pivato B, Berta G (2005) Colonization of tomato root seedling by Pseudomonas fluorescens 92 rkG5: Spatio-temporal dynamics, localization, organization, viability, and culturability. Microb Ecol 50:289–297

    Article  PubMed  Google Scholar 

  • Garcia JL, Probanza A, Ramos B, Manero FG (2003) Arch Agron Soil Sci 49:119

    Article  CAS  Google Scholar 

  • Glick BR (2006) 7th international workshop on plant growth promoting rhizobacteria, 28 May–2 June 2006 Noordwijkerhout, p 30

    Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Goddard VJ, Bailey MJ, Darrah P, Lilley AK, Thompson IP (2001) Monitoring temporal and spatial variation in rhizosphere bacterial population diversity: a community approach for the improved selection of rhizosphere competent bacteria. Plant Soil 232:181–193

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Pande S, Sharma M, Humayun P, Kiran BK, Sandeep D, Vidya MS, Deepthi K, Rupela O (2011) Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot 30:1070–1078

    Article  CAS  Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977

    Article  CAS  Google Scholar 

  • Hayes W (1994) Methyl bromide: the Montreal protocol and the clean air act. In: Vavrina CS (eds) Proceedings of the Florida Tomato Institute. University of Florida, pp 34–44

    Google Scholar 

  • Hibar K, Daami-Remadi M, Khiareddine H, El Mahjoub M (2005) Effet inhibiteur in vitro et in vivo du Trichoderma harzianum sur Fusarium oxysporum f.sp. radicis -lycopersici. Biotechnol Agron Soc Environ 9:163–171

    Google Scholar 

  • Horinouchi H, Muslim A, Suzuki T, Hyakumachi M (2007) Fusarium equiseti GF191 as an effective biocontrol agent against Fusarium crown and root rot of tomato in rock wool systems. Crop Prot 26:1514–1523

    Article  Google Scholar 

  • Horinouchi H, Katsuyama N, Taguchi Y, Hyakumachi M (2008) Control of Fusarium crown and root rot of tomato in a soil system by combination of a plant growth-promoting fungus, Fusarium equiseti, and biodegradable pots. Crop Prot 27:859–864

    Article  Google Scholar 

  • Ito S, Kawaguchi T, Nagata A, Tamura H, Matsushita H, Takahara H, Tanaka S, Ikeda T (2004) Distribution of the FoToml gene encoding tomatinase in formae speciales of Fusarium oxysporum and identification of a novel tomatinase from F. oxysporum f.sp. radicis -lycopersici, the causal agent of Fusarium crown and root rot of tomato. J Gen Plant Pathol 70:195–201

    Article  CAS  Google Scholar 

  • Jacobsen BJ, Backman PA (1993) Biological and cultural plant disease controls: alternatives and supplements to chemicals in IPM systems. Plant Dis 77:311–315

    Google Scholar 

  • Jarvis WR, Shoemaker RA (1978) Toxonomic status of Fusarium oxysporum causing foot and root rot of tomato. Phytopathology 68:1679–1680

    Article  Google Scholar 

  • Jarvis WR, Thorpe HJ (1976) Susceptibility of Lycopersicon species and hybrids to the foot and root rot pathogen Fusarium oxysporum. Plant Dis Rep 60:1027–1031

    Google Scholar 

  • Jarvis WR, Thorpe HJ (1981) Control of Fusarium foot and root rot of tomato by soil amendment with lettuce residues. Can J Plant Pathol 3:159–162

    Article  Google Scholar 

  • Jones JB, Jones JP, Stall RE, Zitter TA (eds) (1991) Compendium of tomato diseases. American Phytopathological Society, St. Paul

    Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Kamilova F, Leveau JHJ, Lugtenberg B (2007) Collimonas fungivorans, an unpredicted in vitro but efficient in vivo biocontrol agent for the suppression of tomato foot and root rot. Environ Microbiol 9:1597–1603

    Article  CAS  PubMed  Google Scholar 

  • Kamilova F, Lamers G, Lugtenberg B (2008) Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as subsequent formation of new spores. Environ Microbiol 10:2455–2461

    Article  PubMed  Google Scholar 

  • Khalil S, Alsanius BW (2010) Evaluation of biocontrol agents for managing root diseases on hydroponically grown tomato. J Plant Dis Prot 117:214–219

    Article  CAS  Google Scholar 

  • Khan MR, Khan SM (2001) Biomanagement of Fusarium wilt of tomato by the soil application of certain phosphate-solubilizing microorganisms. Int J Pest Manag 47:227–231

    Article  Google Scholar 

  • Kloepper JW (2003) In: Reddy MS, Anandaraj M, Eapen SJ, Sarma YR, Kloepper JW (eds) Abstracts and short papers 6th international PGPR workshop, 5–10 October 2003, Indian Institute of Spices Research, Calicut pp 81–92

    Google Scholar 

  • Kloepper JW, Tuzun S, Ku DJA (1992) Proposed definitions related to induced disease resistance. Biocontrol Sci Technol 2:349–351

    Article  Google Scholar 

  • Komada H (1994) Strategies and prospects on biocontrol of soilborne diseases in soilless culture. Plant Prot 48:413–417

    Google Scholar 

  • Kravchenko LV, Azarova TS, Leonova-Erko EI, Shaposhnikov AI, Makarova NM, Tikhonovich IA (2003) Root exudates of tomato plants and their effect on the growth and antifungal activity of Pseudomonas strains. Microbiology 72:37–41

    Article  CAS  Google Scholar 

  • Lagopodi AL, Ram AFJ, Lamers GEM, Punt PJ, Van den Hondel CAMJJ, Lugtenberg BJJ, Bloemberg GV (2002) Novel aspects of tomato root colonization and infection by Fusarium oxysporum f.sp. radicis -lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Mol Plant Microbe Interact 15:172–179

    Article  CAS  PubMed  Google Scholar 

  • Lahdenperä ML (2000) Mycostop® in the control of Fusarium oxysporum on vegetables. Biocontrol Infoletter. Kemira Agro Oy, Espoo Research Centre, Espoo

    Google Scholar 

  • Larkin RP, Fravel DR (2002) Effects of varying environmental conditions on biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp. Phytopathology 92:1160–1166

    Article  PubMed  Google Scholar 

  • Lee S-W, Ahn I-P, Lim J-W, Lee Y-H (2005) Pseudomonas putida strain 17 isolated from replant soil promotes tomato growth and inhibits conidial germination of soilborne plant pathogens. Plant Pathol J 21:244–251

    Article  Google Scholar 

  • Lemanceau P, Bakker PAHM, de Kogel J, Alabouvette C, Schippers B (1992) Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum. Fo47. Appl Environ Microbiol 58:2978–2982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre G, Boeufgras J-M, Alabouvette C (1995) Effect of two plant species, flax (Linum usitatissimum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent pseudomonads. Environ Microbiol 61:1004–1012

    CAS  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria. Phytopathology 85:695–698

    Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant Microbe Interact 4:5–13

    Article  CAS  Google Scholar 

  • Loper JE, Schroth MN (1986) Importance of siderophores in microbial interactions in the rhizosphere. In: Swinburne TR (ed) Iron siderophores and plant disease. Plenum Press, New York, pp 85–89

    Google Scholar 

  • Louter JH, Edgington LV (1990) Indications of cross-protection against Fusarium crown and root rot of tomato. Can J Plant Pathol 12:283–288

    Article  Google Scholar 

  • Lugtenberg BJJ, Bloemberg GV (2004) Life in the rhizosphere. In: Ramos JL (ed) The pseudomonads, vol I: Genomics, life style and molecular architecture. Kluwer Academic/Plenum, New York, pp 403–430

    Google Scholar 

  • Marois JJ, Mitchell DJ (1981) Effects of fumigation and fungal antagonists on the relationships of inoculum density to infection incidence and disease severity in Fusarium crown rot of tomato. Phytopathology 71:167–170

    Article  Google Scholar 

  • Marois JJ, Mitchell DJ, Sonoda RM (1981) Biological control of Fusarium crown rot of tomato under field condition. Phytopathology 71:1257–1260

    Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • McGovern RJ, Datnoff LE (1992) Fusarium crown and root rot: reevaluation of management strategies. In: Vavrina CS (ed) ‘Proceedings of Florida Tomato Institute’ Vegetable Crops Special Series SS-HOS-1, Vegetable Crops Department, University of Florida-IFAS, Gainesville, FL 32611, pp 75–86

    Google Scholar 

  • Menzies JG, Koch C, Seywerd F (1990) Additions to the host range of Fusarium oxysporum f. sp. radicis -lycopersici. Plant Dis 74:569–572

    Article  Google Scholar 

  • Meziane H, Van der Sluis I, Van Loon LC, Hofte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    Article  PubMed  Google Scholar 

  • Minuto A, Spadaro D, Garibaldi A, Gullino ML (2006) Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Prot 25:468–475

    Article  Google Scholar 

  • Moreno CA, Castillo F, Gonzàlez A, Bernal D, Jaimes Y, Chaparro M, Gonzàlez C, Rodriguez F, Restrepo S, Cotes AM (2009) Biological and molecular characterization of the response of tomato plants treated with Trichoderma koningiopsis. Physiol Mol Plant Pathol 74:111–120

    Article  CAS  Google Scholar 

  • Olivain C, Humbert C, Nahalkova J, Fatehi J, L’Haridon F, Alabouvette C (2006) Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil. Appl Environ Microbiol 72:1523–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ongena M, Daayf F, Jacques P, Thonart P, Banhamou N, Paulitz TC, Belanger RR (2000) Systemic induction of phytoalexins in cucumber in response to treatment with fluorescent Pseudomonads. Plant Pathol 49:523–530

    Article  CAS  Google Scholar 

  • Ozbay N, Newman S (2004) Fusarium crown and root rot of Tomato and control methods. Plant Pathol J 3:9–18

    Article  Google Scholar 

  • Ozbay N, Newman SE, Basham CW, Brown WM (2001) Biological control of Fusarium crown and root rot of tomato with Trichoderma harzianum. Hortscience 36:554

    Google Scholar 

  • Park KS, Ahn IP, Kim CH (2001) Systemic resistance and expression of the pathogenesis-related genes mediated by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens EXTN-1 against anthracnose disease in cucumber. Mycobiology 29:48–53

    CAS  Google Scholar 

  • Paulitz TC, Bélanger RR (2001) Biological control in greenhouse systems. Annu Rev Phytopathol 39:103–133

    Article  CAS  PubMed  Google Scholar 

  • Phae CG, Shoda M, Kita N, Nakano M, Ushiyama K (1992) Biological control of crown and root rot and bacterial wilt of tomato by Bacillus subtilis NB22. Ann Phytopathol Soc Jpn 58:329–339

    Article  Google Scholar 

  • Piga PM, Belanger RR, Paulitz TC, Benhamou N (1997) Increased resistance to Fusarium oxysporum f. sp. radicis -lycopersici in tomato plants treated with the endophytic bacterium Pseudomonas fluorescens strain 63-28. Physiol Mol Plant Pathol 50:301–320

    Article  Google Scholar 

  • Postma J, Clematis F, Nijhuis EH, Someus E (2013) Efficacy of four phosphate-mobilizing bacteria applied with an animal bone charcoal formulation in controlling Pythium aphanidermatum and Fusarium oxysporum f. sp. radicis lycopersici in tomato. Biol Control 67:284–291

    Article  CAS  Google Scholar 

  • Prasad RD, Rangeshwaran R (2000) Effect of soil application of a granular formulation of Trichoderma harzianum on Rhizoctonia solani incited seed rot and damping-off of chickpea. J Mycol Plant Pathol 30:216–220

    Google Scholar 

  • Ross AF (1961) Systemic acquired resistance induced by localized virus infection in plants. Virology 14:340–358

    Article  CAS  PubMed  Google Scholar 

  • Rowe RC (1980) Comparative pathogenicity and host ranges of Fusarium oxysporum isolates causing crown and root rot of greenhouse and field-grown tomatoes in North America and Japan. Phytopathology 70:1143–1148

    Article  Google Scholar 

  • Rowe RC, Farley JD (1978) Control of Fusarium crown and root rot of greenhouse tomatoes by inhibiting recolonization of steam-disinfested soil with a captafol drench. Phytopathology 68:1221–1224

    Article  Google Scholar 

  • Rowe RC, Farely JD, Coplin DL (1977) Air-borne spore dispersal and recolonization of steamed soil by Fusarium oxysporum in tomato greenhouse. Phytopathology 67:1513–1517

    Article  Google Scholar 

  • Sato R, Araki T (1974) On the tomato root-rot disease occurring under vinyl-house conditions in southern Hokkaido. Ann Rep Soc Plant Prot North Jpn 25:5–13

    Google Scholar 

  • Sharifi-Tehrani A, Zala M, Natsch A, Moënne-Loccoz Y, Défago G (1998) Biocontrol of soil-borne fungal plant diseases by 2, 4-diacetylphloroglucinol producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. Eur J Plant Pathol 104:631–643

    Article  CAS  Google Scholar 

  • Sharma VK, Nowak J (1998) Enhancement of Verticillium wilt resistance in tomato transplants by in vitro co-culture of seedlings with a plant growth promoting rhizobacterium (Pseudomonas sp. strain PsJN). Can J Microbiol 44:528–536

    Article  CAS  Google Scholar 

  • Sivan A, Chet I (1993) Integrated control of Fusarium crown and root rot of tomato with Trichoderma harzianum in combination with methyl bromide or soil solarization. Crop Prot 12:380–386

    Article  CAS  Google Scholar 

  • Sivan A, Ucko O, Chet I (1987) Biological control of Fusarium Crown Rot of tomato by Trichoderma harzianum under field conditions. Plant Dis 71:587–592

    Article  Google Scholar 

  • Sneh B, Dupler M, Elad Y, Baker R (1984) Chlamydospore germination of Fusarium oxysporum f.sp. cucumerinum as affected by fluorescent and lytic bacteria from a Fusarium-suppressive soil. Phytopathology 14:1115–1124

    Article  Google Scholar 

  • Turlier MF, Eparvier A, Alabouvette C (1994) Early dynamic interactions between Fusarium oxysporum f sp lini and the roots of Linum usitatissimum as revealed by transgenic GUS-marked hyphae. Can J Bot 72:1605–1612

    Article  Google Scholar 

  • Validov S, Kamilova F, Qi S, Stephan D, Wang JJ, Makarova N, Lugtenberg B (2007) Selection of bacteria able to control Fusarium oxysporum f.sp. radicis lycopersici in stonewool substrate. J Appl Microbiol 102:461–471

    Article  CAS  PubMed  Google Scholar 

  • Validov SZ, Kamilova F, Lugtenberg BJJ (2009) Pseudomonas putida strain PCL1760 controls tomato foot and root rot in stonewool under industrial conditions in a certified greenhouse. Biol Control 48:6–11

    Article  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Van Peer R, Schippers B (1989) Plant growth responses to bacterization and rhizosphere microbial development in hydroponic cultures. Can J Microbiol 35:456–463

    Article  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. Strain WCS417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • Van Rij ET, Wesselink M, Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2004) Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol Plant Microbe Interact 17:557–566

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors want to thank the Office Chérifien des phosphates (OCP, Morocco) for its initiative to support the research in Moroccan universities through its call for R&D projects for phosphates. This work is the result of the establishment of a research network between two researchers from the University Ibn Zohr, Agadir and University Cadi Ayad Marrakech, Morocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouiz garne Brahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Brahim, B., Ouhdouch, Y. (2017). Management of Tomato Foot and Root Rot (TFRR) by Biocontrol Agents with Emphasis on Factors Affecting Its Effectiveness. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds) Probiotics and Plant Health. Springer, Singapore. https://doi.org/10.1007/978-981-10-3473-2_1

Download citation

Publish with us

Policies and ethics