Skip to main content

Misconceptions in Electrochemistry: How Do Pedagogical Agents Help?

  • Chapter
  • First Online:
Book cover Overcoming Students' Misconceptions in Science

Abstract

Previous research has shown that students display misconceptions about electrochemistry due to the abstract concepts in this topic. An interactive multimedia module with pedagogical agents (IMMPA) named EC Lab (Electrochemistry Lab) was developed in order to assist students to overcome the misconceptions in this topic. The study was carried out with the aim to gauge the effect of the IMMPA EC Lab on students’ understanding in the learning of electrochemistry. A sample of 127 Form Four (equivalent to grade 10) students from two secondary schools in Malaysia was involved in the study. There was one experimental group and one comparison group, and the students were taught by the same chemistry teacher in each school. An achievement test in the electrochemistry topic and the IMMPA EC Lab were used as the instruments in the study. Results showed a significant main effect of teaching method on students’ mean scores in the achievement test with the experimental group surpassing the comparison group in the learning of electrochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson, R., Mayer, R., & Merrill, M. (2005). Fostering social agency in multimedia learning: Examining the impact of an animated agent’s voice. Contemporary Educational Psychology, 30, 117–139.

    Article  Google Scholar 

  • Ausubel, D. P., Novak, J. D., & Hanesian, H. (1978). Educational psychology: A cognitive view (2nd ed.). New York, NY: Holt, Rhinehart and Winston.

    Google Scholar 

  • Aziz, N., & Chong, M. N. (2010). Pemahaman konsep pelajar tingkatan empat dalam topik elektrokimia di daerah Skudai, Johor [Understanding of electrochemistry topic among Form Four students in the state of Skudai, Johor]. Retrieved from http://eprints.utm.my/11277/

  • Bahar, M. (2003). Misconception in biology education and conceptual change strategies. Educational Sciences, 3(1), 55–64.

    Google Scholar 

  • Barak, M. (2007). Transition from traditional to ICT-enhanced learning environments in undergraduate chemistry courses. Computers in Education, 48, 30–43.

    Article  Google Scholar 

  • Bojczuk, M. (1982). Topic difficulties in O- and A-Level chemistry. School Science Review, 64, 545–551.

    Google Scholar 

  • Bowen, C. W. (1998). Item design considerations for computer-based testing of student learning in chemistry. Journal of Chemical Education, 75(9), 1172–1175.

    Article  Google Scholar 

  • Burewicz, A., & Miranowicz, N. (2002). Categorization of visualization tools in aspects of chemical research and education. International Journal of Quantum Chemistry, 88(5), 549–563.

    Article  Google Scholar 

  • Burke, K. A., Greenbowe, T. J., & Windschitl, M. A. (1998). Developing and using conceptual computer animations for chemistry instruction. Journal of Chemical Education, 5(12), 1658–1661.

    Article  Google Scholar 

  • Chou, C. Y., Chan, T. W., & Lin, C. J. (2003). Redefining the learning companion: The past, present and future of educational agents. Computers in Education, 40, 255–269.

    Article  Google Scholar 

  • Clarebout, G., & Elen, J. (2007). In search of pedagogical agents’ modality and dialogue effects in open learning environments. Accessed July 23, 2009 at http://www.ascilite.org.au/ajet/ejist/docs/vol10_no1/papers/full_papers/clarebout_elen.pdf

  • Craig, S. D., Gholson, B., & Driscoll, D. M. (2002). Animated pedagogical agents in multimedia educational environments: Effects of agent properties, picture features and redundancy. Journal of Educational Psychology, 94(2), 428–434.

    Article  Google Scholar 

  • Demirci, N., & Çirkinoğlu, A. (2004). Determining students’ preconceptions/misconceptions in electricity and magnetism. Journal of Turkish Science Education, 1(2), 51–54.

    Google Scholar 

  • Dick, W., & Carey, L. (1991). The systematic design of educational technologies. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Doymus, K., Karacop, A., & Simsek, U. (2010). Effects of jigsaw and animation techniques on students’ understanding of concepts and subjects in electrochemistry. Educational Technology Research and Development, 58, 671–691.

    Article  Google Scholar 

  • Fisher, K., & Lipson, J. (1986). Twenty questions about student errors. Journal of Research in Science Teaching, 23(9), 783–803.

    Article  Google Scholar 

  • Flagg, B. N. (1990). Formative evaluation for educational technologies. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Gabel, D. (2003). Enhancing the conceptual understanding of science. Educational Horizons, 81(2), 70–76.

    Google Scholar 

  • Garnett, P., & Hackling, M. (1993). Chemistry misconceptions at the secondary-tertiary interface. Chemistry in Australia, 60(3), 117–119.

    Google Scholar 

  • Garnett, P. J., & Treagust, D. F. (1992a). Conceptual difficulties experienced by senior high school students of electrochemistry: Electric circuits and oxidation-reduction equations. Journal of Research in Science Teaching, 29, 121–142.

    Article  Google Scholar 

  • Garnett, P. J., & Treagust, D. F. (1992b). Conceptual difficulties experienced by senior high school students of electrochemistry: Electrochemical (galvanic) and electrolytic cells. Journal of Research in Science Teaching, 29(10), 1079–1099.

    Article  Google Scholar 

  • Gilbert, J. K., Osborne, R. J., & Fensham, P. J. (1982). Children’s science and its consequences for teaching. Science Education, 66(4), 623–633.

    Article  Google Scholar 

  • Gois, J. Y., & Giordan, M. (2009). Evolution of virtual learning environments. In Enseñanza de las Ciencias, Número Extra VIII Congreso Internacional sobre Investigación en Didáctica de las Ciencias (pp. 2864–2867). Barcelona.

    Google Scholar 

  • Gustafson, K., & Branch, R. M. (1997). Survey of instructional development model (3rd ed.). New York, NY: ERIC Clearinghouse on Information Technology.

    Google Scholar 

  • Hamza, K. M., & Wickman, P.-O. (2008). Describing and analyzing learning in action: An empirical study of the importance of misconceptions in learning science. Science Education, 92(1), 141–164.

    Article  Google Scholar 

  • Hill, J. R., & Hannafin, M. J. (2001). Teaching and learning in digital environments: The resurgence of resource-based learning. Educational Technology Research and Development, 49(3), 37–52.

    Article  Google Scholar 

  • Horton, C. (2007). Student alternative conceptions in chemistry. California Journal of Science Education, VII(2), 72–153.

    Google Scholar 

  • Johnson, W. L., Rickel, J. W., & Lester, J. C. (2000). Animated pedagogical agents: Face-to-face interaction in interactive learning environments. International Journal of Artificial Intelligence in Education, 11, 47–78.

    Google Scholar 

  • Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70(9), 701–705.

    Article  Google Scholar 

  • Kamisah, O., & Lee, T. T. (2014). Impact of interactive multimedia module with pedagogical agents on students’ understanding and motivation in the learning of electrochemistry. International Journal of Science and Mathematics Education, 12, 395–421.

    Article  Google Scholar 

  • Karsli, F., & Çalik, M. (2012). Can freshman science student teachers’ alternative conceptions of ‘electrochemical cells’ be fully diminished? Asian Journal of Chemistry, 24(2), 485–491.

    Google Scholar 

  • Kemp, J. E., Morrison, G. R., & Ross, S. V. (2004). Design effective instruction (4th ed.). New York, NY: Wiley.

    Google Scholar 

  • Kose, E. O., Pekel, O., & Hasenekoglu, I. (2009). Misconceptions and alternative concepts in biology textbooks: Photosynthesis and respiration. Journal of Science Education, 2(10), 91–93.

    Google Scholar 

  • Lai, S. P. (2003). Keberkesanan perisian multimedia bagi pengajaran dan pembelajaran elektrokimia (sel elektrolisis dan sel kimia): Satu kajian kes. [Effectiveness of multimedia software in teaching and learning of electrochemistry (electrolysis cell and chemical cell] (Unpublished master’s thesis). Universiti Teknologi Malaysia, Skudai.

    Google Scholar 

  • Land, S. M. (2000). Cognitive requirements for learning with open-ended learning environments. Educational Technology Research and Development, 48(3), 61–78.

    Article  Google Scholar 

  • Lee, T. T. (2008). Kefahaman pelajar tingkatan empat mengenai elektrokimia. [Form Four students’ understanding of electrochemistry] (Unpublished master’s thesis). Universiti Teknologi Malaysia, Skudai.

    Google Scholar 

  • Lee, T. T. (2013). Pembinaan dan keberkesanan modul multimedia interaktif dengan agen pedagogi dalam pembelajaran elektrokimia. [Development and effectiveness of interactive multimedia model with pedagogical agent in learning electrochemistry] (Unpublished doctoral thesis). Universiti Kebangsaan Malaysia, Bangi.

    Google Scholar 

  • Lee, T. T., & Kamisah, O. (2011). Effectiveness of interactive multimedia module with pedagogical agent (IMMPA) in the learning of electrochemistry: A preliminary investigation. Asia-Pacific Forum on Science Learning and Teaching, 12(2), Article 9.

    Google Scholar 

  • Lee, T. T., & Kamisah, O. (2012a). Interactive multimedia module with pedagogical agents: Formative evaluation. International Education Studies, 5(6), 50–64.

    Google Scholar 

  • Lee, T. T., & Kamisah, O. (2012b). Learning aids in chemistry: Design and development. Research Journal of Applied Sciences, Engineering and Technology, 4(20), 4081–4092.

    Google Scholar 

  • Lee, T. T., & Kamisah, O. (2014). Development of interactive multimedia module with pedagogical agent (IMMPA) in the learning of electrochemistry: Needs assessment. Research Journal of Applied Sciences, Engineering and Technology, 7(18), 3725–3732.

    Article  Google Scholar 

  • Lee, T. T., & Mohammad Yusof, A. (2009). Miskonsepsi pelajar tingkatan empat mengenai Elektrokimia [Form Four students’ misconception about electrochemistry]. Jurnal Sains dan Matematik UPSI, 1(2), 52–64.

    Google Scholar 

  • Lerman, Z. M. (2001). Visualizing the chemical bond. Chemical Education International, 2, 6–13.

    Google Scholar 

  • Lerman, Z. M., & Morton, D. (2009). Using the arts and computer animation to make chemistry accessible to all in the twenty-first century. In M. Gupta-Bhowan, S. Jhaumeer-Laulloo, H. L. KamWah, & P. Ramasami (Eds.), Chemistry education in the ICT age (pp. 31–40). Mauritius: Springer Science + Business Media B.V.

    Chapter  Google Scholar 

  • Lin, H. S., Yang, T. C., Chiu, H. L., & Chou, C. Y. (2002). Students’ difficulties in learning electrochemistry. Proceedings of the National Science Council, ROC (D), 12(3), 100–105.

    Google Scholar 

  • Mahzan, B. (2005). Curriculum specifications: Chemistry form 4. Retrieved from http://bpk.moe.gov.my/index.php/muat-turun-dokumen/kbsm/category/27-tingkatan-4?start=14

  • Mondal, B. C., & Chakraborty, A. (2013). Misconceptions in chemistry: Its identification and remedial measures. Germany: LAP LAMBERT Academic Publishing.

    Google Scholar 

  • Morrison, G. R., Ross, S. M., & Kemp, J. E. (2007). Designing effective instruction (5th.ed.). New Jersey: Wiley.

    Google Scholar 

  • Nass, C., Steuer, J., & Tauber, E. (1994). Computers are social actors. In ACM Conference on Human Factors in Computing Systems (pp. 72–78). Boston, Massachuetts, USA.

    Google Scholar 

  • Needham, R. (1987). CLIS in the classroom: Teaching strategies for developing understanding in science. Leeds, UK: University of Leeds.

    Google Scholar 

  • Ormrod, J. (1999). Human learning (3rd ed.). Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  • Osborne, R. J., Bell, B. F., & Gilbert, J. K. (1983). Science teaching and children’s views of the world. European Journal of Science Education, 5(1), 1–14.

    Article  Google Scholar 

  • Özmen, H. (2004). Some student misconceptions in chemistry: A literature review of chemical bonding. Journal of Science Education and Technology, 13(2), 147–159.

    Article  Google Scholar 

  • Phillips, L. M., Norris, S. P., & Macnob, J. S. (2010). Visualizations and science. Visualization in Mathematics, Reading and Science Education, Models and Modeling in Science Education, 5(2), 63–74.

    Article  Google Scholar 

  • Qureshi, E. (2001, 2004). Instructional design models. Retrieved from http://web2.uwindsor.ca/courses/edfac/morton/instructional_design.html

  • Reeves, B., & Nass, C. (1996). The media equation: How people treat computers, television, and new media like real people and places. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Rodrigues, S., Smith, A., & Ainley, M. (2001). Video clips and animation in chemistry CD-ROMS: Student interest and preference. Australian Science Teachers Journal, 47(2), 9–15.

    Google Scholar 

  • Russell, J. W., Kozma, R. B., Jones, T., Wykoff, J., Marx, N., & Davis, J. (1997). Use of simultaneous-synchronized macroscopic, microscopic, and symbolic representations to enhance the teaching and learning of chemical concepts. Journal of Chemical Education, 74(3), 330–334.

    Article  Google Scholar 

  • Sanger, M. J., & Greenbowe, T. J. (1997a). Common student misconceptions in electrochemistry: Galvanic, electrolytic, and concentration cells. Journal of Research in Science Teaching, 34(4), 377–398.

    Article  Google Scholar 

  • Sanger, M. J., & Greenbowe, T. J. (1997b). Students’ misconceptions in electrochemistry: Current flow in electrolyte solutions and the salt bridge. Journal of Chemical Education, 74, 819–823.

    Article  Google Scholar 

  • Sanger, M. J., & Greenbowe, T. J. (2000). Addressing student misconceptions concerning electron flow in aqueous solutions with instruction including computer animations and conceptual change strategies. International Journal of Science Education, 22(5), 521–537.

    Article  Google Scholar 

  • Taber, K. S., & Tan, K. C. D. (2011). The insidious nature of ‘hard core’ alternative conceptions: Implications for the constructivist research programme of patterns in high school students’ and pre-service teachers’ thinking about ionisation energy. International Journal of Science Education, 33(2), 259–297.

    Article  Google Scholar 

  • Tan, Y. T., Loh, W. L., & Tan, O. T. (2007). Success chemistry SPM. Shah Alam, Malaysia: Oxford Fajar Sdn. Bhd.

    Google Scholar 

  • Vygotsky, L. (1978). Mind and society: The development of higher mental processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Wu, H. K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88, 465–492.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamisah Osman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Tien, L.T., Osman, K. (2017). Misconceptions in Electrochemistry: How Do Pedagogical Agents Help?. In: Karpudewan, M., Md Zain, A., Chandrasegaran, A. (eds) Overcoming Students' Misconceptions in Science. Springer, Singapore. https://doi.org/10.1007/978-981-10-3437-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3437-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3435-0

  • Online ISBN: 978-981-10-3437-4

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics