Skip to main content

The Role of Silyl Protecting Group for the Synthesis of Procyanidins and Their Derivatives

  • Chapter
  • First Online:
New Horizons of Process Chemistry

Abstract

The intramolecular [4–8] coupling of silyl-protected catechin and epicatechins is examined. Coupling reaction of silyl-protected epicatechin/catechin, epicatechin/epicatechin, catechin/catechin and catechin/epicatechin worked well to afford the corresponding dimers with excellent selectivity and yield. The series of procyanidin B analogues synthesis are achieved. We also carried out the synthesis of 3-O- and/or 5-O-acyl-catechin and epicatechin derivatives on a gram scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. B. Harborne, The Flavonoids: Advances in research from 1986; Chapman and Hall: London, 1993.

    Google Scholar 

  2. J. B. Harborne and H. Baxter, The Handbook of Natural Flavonoids; John Wiley & Sons: NY, 1999.

    Google Scholar 

  3. C. Hartisch, H. Von Kolodziej, and F. Bruchhausen, Planta Med. 1977, 63, 106.

    Google Scholar 

  4. K. Kameda, T. Takau, H. Okuda, Y. Kimura, T. Okuda, T. Hatano, I. Agata, and S. Arichi, J. Nat. Prod. 1987, 50, 680.

    Google Scholar 

  5. A. Scalbert, Phytochemistry 1991, 30, 3875.

    Google Scholar 

  6. F. V. So, N. Guthrie, A. F. Chambers, and K. K. Carroll, Cancer Lett. 1997, 112, 127.

    Google Scholar 

  7. H. Kolodziej, C. Haberland, H. Woerdenbag, and A. W. T. Konigs, Phytotherapy Res. 1995, 9, 410.

    Google Scholar 

  8. D. Ramljak, L. J., Jr. Romanczyk, L. J. Metheny-Barlow, N. Thompson, V. Knezevic, M. Galaperin, A. Ramesh, and R. B. Dickson, Mol. Cancer Ther. 2005, 4, 537.

    Google Scholar 

  9. L. Liviero, P. P. Puglisis, P. Morazzoni, and E. Bombardelli, Fitoterapia 1994, 65, 203.

    Google Scholar 

  10. A. Constable, N. Varga, J. Richoz, and R. H. Stadler, Mutagenesis 1996, 11, 189.

    Google Scholar 

  11. O. Inanami, Y. Watanabe, B. Syuto, M. Nakano, and M. Kuwabara, Free Radical Res. 1998, 29, 359.

    Google Scholar 

  12. A. A. Shahat, S. I. Ismail, F. M. Hammouda, S. A. Azzam, G. Lemiere, T. De Bruyne, S. De Swaet, L. Piteters, and A. Vlietinck, Phytomedicine 1998, 5, 133.

    Google Scholar 

  13. M. Saito, H. Hosoyama, T. Ariga, S. Kataoka, and M. Yamaji, J. Agric. Food. Chem. 1998, 46, 1460.

    Google Scholar 

  14. O. Inanami, Y. Watanabe, B. Syuto, M. Nakano, and M. Kuwabara, Free Radical Res. 1998, 29, 359.

    Google Scholar 

  15. M. Aviram and B. Fuhrman, Artherosclerosis 1998, 137, S45.

    Google Scholar 

  16. J. Yamakoshi, S. Kataoka, T. Koga, and T. Ariga, T. Artherosclerosis 1999, 142, 139.

    Google Scholar 

  17. H. Kawamoto, F. Nakatsubo, and K. Murakami, J. Wood. Chem. Technol. 1990, 10, 59.

    Google Scholar 

  18. H. Kawamoto, F. Nakatsubo, and K. Murakami, Mokuzai Gakkaishi 1991, 37, 488.

    Google Scholar 

  19. S. Yoneda, H. Kawamoto, and F. Nakatsubo, J. Chem. Soc., Perkin Trans. 1 1997, 1025.

    Google Scholar 

  20. W. Tückmantel, A. P. Kozikowski, and L. J. Jr. Romanczyk, J. Am. Chem. Soc. 1999, 121, 12073.

    Google Scholar 

  21. A. P. Kozikowski, W. Tückmantel, and Y. Hu, J. Org. Chem. 2001, 66, 1287.

    Google Scholar 

  22. W. Tückmantel, G. Böttcher, and L. J. Jr. Romanczyk, J. Org. Chem. 2003, 68, 1641.

    Google Scholar 

  23. K. Ohomori, N. Ushimaru, and K. Suzuki, Tetrahedron Lett. 2002, 43, 7753.

    Google Scholar 

  24. K. Ohomori, N. Ushimaru, and K. Suzuki, PNAS 2004, 101, 12002.

    Google Scholar 

  25. Y. Mohri, M. Sagehashi, T. Yamada, Y. Hattori, K. Morimura, T. Kamo, M. Hirota, and H. Makabe, Tetrahedron Lett. 2007, 48, 5891.

    Google Scholar 

  26. Y. Mohri, M. Sagehashi, T. Yamada, Y. Hattori, Y. Morimura, K. Hamauzu, T. Kamo, M. Hirota, and H. Makabe, Heterocycles 2009, 79, 549.

    Google Scholar 

  27. I. Tarascou, K. Barathieu, Y. Andé, I. Pianet, E. J. Dufourc, and E. Fouquet, Eur. J. Org. Chem. 2006, 5367.

    Google Scholar 

  28. K. Oyama, M. Kuwano, M. Ito, K. Yoshida, and T. Kondo, Tetrahedron Lett. 2008, 49, 3176.

    Google Scholar 

  29. R. D. Alharthy and C. J. Hayes, Tetrahedron Lett. 2010, 51, 1193.

    Google Scholar 

  30. K. Weinges and D. Seiler, Liebigs Ann. Chem. 1968, 714, 193.

    Google Scholar 

  31. S. Nakayama, K. Oyama. T. Kondo, and K. Yoshida, Heterocycles 2007, 73, 451.

    Google Scholar 

  32. P. K. Sharma, A. Kolchinski, H. A. Shea, J. J. Nair, Y. Gou, L. J. Jr. Romanczyk, and H. H. Schmitz, Org. Process Res. Dev. 2007, 11, 422.

    Google Scholar 

  33. K. Matsubara, A. Saito. A. Tanaka, N. Nakajima, R. Akagi, M. Mori, and Y. Mizushina, DNA & Cell Biol. 2006, 25, 95–103.

    Google Scholar 

  34. N. Nakajima, K. Horikawa, N. Takekawa, M. Hamada, and T. Kishimoto, Heterocycles 2012, 84, 349–354.

    Google Scholar 

  35. K. Mori, Y. Ayano, Y. Hamada, T. Hojima, R. Tanaka, Y. Higashino, M. Izuno, T. Okamoto, T. Kawasaki, M. Hamada, N. Nakajima, and A. Saito, Nat. Prod. Chem., Res., 2015, 3, 172; doi:10.4172/2329-6836.1000172.

  36. Y. Hamada, S. Takano, Y. Ayano, M. Tokunaga, T. Koashi, S. Okamoto, S. Doi, M. Ishida, T. Kawasaki, M. Hamada, N. Nakajima, and A. Saito, Molecules 2015, 20(10), 18870–18885; doi:10.3390/molecules201018870.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Nakajima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Nakajima, N., Saito, A. (2017). The Role of Silyl Protecting Group for the Synthesis of Procyanidins and Their Derivatives. In: Tomioka, K., Shioiri, T., Sajiki, H. (eds) New Horizons of Process Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-10-3421-3_17

Download citation

Publish with us

Policies and ethics