Development of Shelf-Stable Reagents for Electrophilic Trifluoromethylthiolation Reaction

  • Zhongyan Huang
  • Norio ShibataEmail author


Pharmaceutical and agrochemical companies are interested in fluorinated compounds as a promising source of drug candidates. About 25% of marketed pharmaceuticals and 40% of agrochemicals contain fluorine atom(s) in their chemical structures. Therefore, the development of efficient synthetic methodology for organofluorine compounds is an important task for synthetic chemists in the field of medicinal chemistry. Among a variety of fluorinated compounds, we discuss herein trifluoromethylthio (SCF3) compounds. The SCF3 group is one of the most lipophilic functional groups in organic chemistry. The electron-withdrawing effect of the SCF3 group is similar to that of the popular trifluoromethyl (CF3) group. Hence, the replacement of the CF3 moiety in market drugs and drug candidates by a SCF3 group is a potential strategy to control bioavailability and cell-membrane permeability of original compounds. In recent decades, a large number of reports for the synthesis of SCF3 compounds have been appeared. Among them, direct trifluoromethylthiolation reaction using shelf-stable reagents is obviously attractive since this functionalization can be performed at a late stage of the multistep synthesis of target molecules. Currently, several shelf-stable reagents for electrophilic trifluoromethylthiolation have been developed. We herein introduce our recent contributions for the development of efficient, shelf-stable reagents for electrophilic trifluoromethylthiolation reaction. Design, synthesis and reactivity of two novel shelf-stable reagents, trifluoromethanesulfonyl hypervalent iodonium ylide and its diazo-derivative are discussed.


Trifluoromethylthio Electrophilic Fluorine Sulfur Trifluoromethyl Ylide 



The author would like to thank all our collaborators and coauthors listed in the original papers. These studies were financially supported in part by the Platform for Drug Discovery, Informatics, and Structural Life Science from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Japan, the Japan Agency for Medical Research and Development (AMED), the Advanced Catalytic Transformation (ACT-C) from the Japan Science and Technology (JST) Agency, the Hoansha Foundation, and the Kobayashi International Scholarship Foundation. Mr. Zhongyan Huang thanks the Hori Sciences & Arts Foundation (Japan) for support.


  1. 1.
    O’Hagan D, Harper DB, J Fluorine Chem. 1999;100:127–133.Google Scholar
  2. 2.
    Barata-Vallejo S, Bonesi S. Postigo A. Org. Biomol. Chem. 2016;14, 7150–7182.Google Scholar
  3. 3.
    Laczay P, Vörös G, Semjén G. Int J Parasitol. 1995;25:753–756.Google Scholar
  4. 4.
    Silverstone T, Fincham J, Plumley J. Br J Clin Pharmacol. 1979;7:353–356.Google Scholar
  5. 5.
    Aswapokee N, Neu HC. Antimicrob Agents Chemother. 1979;15:444–446.Google Scholar
  6. 6.
    Xu XH, Matsuzaki K, Shibata N. Chem Rev. 2015;115:731–764.Google Scholar
  7. 7.
    Scherer O. Angew Chem. 1939;52:457–459.Google Scholar
  8. 8.
    Nodiff EA, Lipschutz S, Craig PN, Gordon M. J Org Chem. 1960;25:60–65.Google Scholar
  9. 9.
    Wakselman C, Tordeux M. J Chem Soc Commun. 1984;793–794.Google Scholar
  10. 10.
    Kieltsch I, Eisenberger P, Togni A. Angew Chem Int Ed. 2007;46:754–757.Google Scholar
  11. 11.
    Yasui H, Yamamoto T, Tokunaga E, Shibata N. J Fluorine Chem. 2011;132:186–189.Google Scholar
  12. 12.
    Man EH, Coffman DD, Muetterties EL. J Am Chem Soc. 1959;81:3575–3577.Google Scholar
  13. 13.
    Andreades S, Harris JF Jr, Sheppard WA. J Org Chem. 1964;29:898–900.Google Scholar
  14. 14.
    Hanack M, Kìhnle A, Tetrahedron Lett. 1981;22:3047–3048.Google Scholar
  15. 15.
    Kolasa A. J Fluorine Chem. 1987;36:29–40.Google Scholar
  16. 16.
    Popov VI, Haas A, Lieb M. J Fluorine Chem. 1990;47:131–136.Google Scholar
  17. 17.
    Adams DJ, Clark JH. J Org Chem. 2000;65:1456–1460.Google Scholar
  18. 18.
    Kremsner JM, Rack M, Pilger C, Kappe CO. Tetrahedron Lett. 2009;50:3665–3668.Google Scholar
  19. 19.
    Munavalli S, Rohrbaugh DK, Rossman DI, Berg FJ, Wagner GW, Durst HD. Syn Commun. 2000;30:2847–2854.Google Scholar
  20. 20.
    Ferry AL, Billard T, Langlois BR, Bacque E. J Org Chem. 2008;73:9362–9365.Google Scholar
  21. 21.
    Bootwicha T, Liu X, Pluta R, Atodiresei I, Rueping M. Angew Chem Int Ed. 2013;52:12856–12859.Google Scholar
  22. 22.
    Shao X, Wang X, Yang T, Lu L, Shen Q, Angew Chem Int Ed. 2013;52:3457–3460.Google Scholar
  23. 23.
    Xu C, Shen Q, Org Lett. 2014;16:2046–2049.Google Scholar
  24. 24.
    Xu C, Ma B, Shen Q. Angew Chem Int Ed. 2014;53:9316–9320.Google Scholar
  25. 25.
    Alazet S, Zimmer L, Billard T, Chem Eur J. 2014;20:8589–8593.Google Scholar
  26. 26.
    Hayashi Y, Okada T, Kawanisi M. Bull Chem Soc Jpn. 1970;43:2506–2511.Google Scholar
  27. 27.
    Camacho MB, Clark AE, Liebrecht TA, Deluca JP. J Am Chem Soc. 2000;122:5210–5211.Google Scholar
  28. 28.
    Müller P. Acc Chem Res. 2004;37:243–251.Google Scholar
  29. 29.
    Hadjiarapoglou L, Spyroudis S, Varvoglis A. J Am Chem Soc. 1985;107:7178–7179.Google Scholar
  30. 30.
    Sander W, Strehl A, Winkler M. Eur J Org Chem. 2001;3771.Google Scholar
  31. 31.
    Yang YD, Azuma A, Tokunaga E, Yamasaki M, Shiro M, Shibata N. J Am Chem Soc. 2013;135:8782–8785.Google Scholar
  32. 32.
    Rappoport Z, editor. The chemistry of enamines (Parts 1 & 2). New York: Wiley; 1994.Google Scholar
  33. 33.
    Xie JH, Zhu SF, Zhou QL, Chem Soc Rev. 2012;41:4126–4139.Google Scholar
  34. 34.
    Abdel-Magid AF, Cohen JH, Maryanoff CA. Curr Med Chem. 1999;6:955–970.Google Scholar
  35. 35.
    Gribble GW, Editor. Heterocyclic scaffolds II: reactions and applications of indoles, Berlin: Springer-Verlag; 2010.Google Scholar
  36. 36.
    d’Ischia M, Napolitano A, Pezzella A. Pyrroles and their benzo derivatives: applications. In: Katritzky AR, Ramsden C A, Scriven EFV, Taylor RJK, editors. Comprehensive Heterocyclic Chemistry III. Amsterdam: Elsevier; 2008. Vol. 3. p. 353–388.Google Scholar
  37. 37.
    Haas A, Niemann U. Chem Ber. 1977;110:67–77.Google Scholar
  38. 38.
    Ferry A, Billard T, Bacqué E, Langlois BR. J Fluorine Chem. 2012;134:160–163.Google Scholar
  39. 39.
    Huang Z, Yang YD, Tokunaga E, Shibata N. Org Lett. 2015;17:1094–1097.Google Scholar
  40. 40.
    Toulgoat F, Alazet S, Billard T. Eur J Org Chem. 2014;2415.Google Scholar
  41. 41.
    Huang Z, Yang YD, Tokunaga E, Shibata N. Asian J Org Chem. 2015;4:525–527.Google Scholar
  42. 42.
    Liu J, Chu L, Qing FL. Org Lett. 2013;15:894–897.Google Scholar
  43. 43.
    Arimori A, Takada M, Shibata N. Org Lett. 2015;17:1063–1065.Google Scholar
  44. 44.
    Arimori A, Takada M, Shibata N. Dalton Trans. 2015;44:19456–19459.Google Scholar
  45. 45.
    Aajoud A, Raveton M, Azrou-Isghi D, Tissut M, Ravanel P. J Agric Food Chem. 2008;56:3732–3737.Google Scholar
  46. 46.
    Chachignon H, Maeno M, Kondo H, Shibata N, Cahard D. Org Lett. 2016;18:2468–2470.Google Scholar
  47. 47.
    Miyamoto K, Iwasaki S, Doi R, Ota T, Kawano Y, Yamashita J, Sakai Y, Tada N, Ochiai M, Hayashi S, Nakanishi W, Uchiyama M, J. Org. Chem., 2016; 81:3188–3198.Google Scholar
  48. 48.
    Pang W, Zhu S, Xing C, Luo N, Jiang H, Zhu S. J Fluorine Chem. 2008;129:343–348.Google Scholar
  49. 49.
    Huang Z, Wang C, Tokunaga E, Sumii Y, Shibata N. Org Lett. 2015;17:5610–5613.Google Scholar
  50. 50.
    Huang Z, Okuyama K, Wang C, Tokunaga E, Li X, Shibata N. ChemistryOpen. 2016; 5:188–191.Google Scholar
  51. 51.
    Morin RB, Gorman M. editors. Chemistry and biology of β-lactam antibiotics. New York: Academic Press, New York: 1982. Vols. 1−3.Google Scholar
  52. 52.
    The reagent 1 is commercially available. See the websites, “Shibata trifluoromethylthiolation reagent” from SyQuest Laboratories,, and “Shibata Reagent II”, from TCI America,

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Frontier Materials, Department of Nanopharmaceutical Sciences, Life Science and Applied ChemistryNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations