Advertisement

Methylenation Reaction of Carbonyl Compounds Using Julia-Kocienski Reagents

Chapter

Abstract

Methylenation of carbonyl compounds is an important reaction in organic synthesis. In this mini-review, typical and most often used methylenation reactions are summarized briefly. The new Julia-Kocienski type methylenation reagents are fully summarized together with its reaction mechanism and applications to the total synthesis of natural products.

Keywords

Methylenation reagents Julia-Kocienski reaction Olefination Carbonyl compounds Heteroaryl sulfones 

Notes

Acknowledgements

This work was partially supported financially by the JSPS KAKENHI Grant Number 25410111.

References

  1. 1.
    For a review: see Muller, C.; Cokoja, M.; Kuhn, F. E. “Modern variants of Wittig, Peterson, and Tebbe protocols” from Science of Synthesis, C-1 Building Blocks in Organic Synthesis, 2014, 2, 1–19.Google Scholar
  2. 2.
    Wittig, G.; Geissler, G. Liebigs Ann. Chem. 1953, 580, 44.Google Scholar
  3. 3.
    Liapis, M.; Ragoussis, V.; Ragoussis, N. J. Chem. Soc., Perkin Trans. 1 1985, 815.Google Scholar
  4. 4.
    Peterson, D. J. J. Org. Chem. 1968, 33, 780.Google Scholar
  5. 5.
    Johnson, C. R.; Tait, B. D. J. Org. Chem. 1987, 52, 281.Google Scholar
  6. 6.
    Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100, 3611.Google Scholar
  7. 7.
    Petasis, N. A.; Bzowej. E. J. Am. Chem. Soc. 1990, 112, 6392.Google Scholar
  8. 8.
    Takai, K.; Hotta, Y.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1978, 19, 2417.Google Scholar
  9. 9.
    Lombardo, L. Tetrahedron Lett. 1982, 23, 4293.Google Scholar
  10. 10.
    Takai, K.; Kakiuchi, T.; Kataoka, Y.; Utimoto, K. J. Org. Chem. 1994, 59, 2668.Google Scholar
  11. 11.
    Sada, M.; Komagawa, S.; Uchiyama, M.; Kobata, M.; Mizuno, T.; Utimoto, K.; Oshima, K.; Matsubara, S. J. Am. Chem. Soc. 2010, 132, 17452.Google Scholar
  12. 12.
    Matsubara, S.; Sugihara, M.; Utimoto, K. Synlett 1998, 313.Google Scholar
  13. 13.
    Chausset-Boissarie, L.; Àrvai, R.; Cumming, G. R.; Guénée, L.; Kündig, E. P. Org. Biomol. Chem. 2012, 10, 6473.Google Scholar
  14. 14.
    Lebel, H.; Paquet, V. J. Am. Chem. Soc. 2004, 126, 320.Google Scholar
  15. 15.
    Lebel, H.; Davi, M.; Díez-González, S.; Nolan, S. P. J. Org. Chem. 2007, 72, 144.Google Scholar
  16. 16.
    Shishido, K.; Tokunaga, Y.; Omachi, N.; Hiroya, K.; Fukumoto, K.; Kametani, T. J. Chem. Soc., Perkin Trans. I 1990, 2481.Google Scholar
  17. 17.
    Kaluza, N. M.; Schollmeyer, D.; Nubbemeyer, U. Eur. J. Org. Chem. 2016, 357.Google Scholar
  18. 18.
    Chen, D.; Liu, H.-M.; Li, M.-M.; Yan, Y.-M.; Xu, W.-D.; Li, X.-N.; Cheng, Y.-X.; Qin, H.-B. Chem. Commun. 2015, 51, 14594.Google Scholar
  19. 19.
    For a review: Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002, 2563.Google Scholar
  20. 20.
    For a review: Aïssa, C. Eur. J. Org. Chem. 2009, 1831.Google Scholar
  21. 21.
    Baudin, J. B.; Hareau, G.; Julia, S. A.; Ruel, O. Tetrahedron Lett. 1991, 32, 1175.Google Scholar
  22. 22.
    Baudin, J. B.; Hareau, G.; Julia, S. A.; Lorne, R.; Ruel, O. Bull. Soc. Chim. Fr. 1993, 130, 856.Google Scholar
  23. 23.
    Gueyrard, D.; Haddoub, R.; Salem, A.; Bacar, N. S.; Goekjian, P. G. Synlett 2005, 520.Google Scholar
  24. 24.
    Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett 1998, 26.Google Scholar
  25. 25.
    Hale, K. J.; Domostoj, M. M.; Tocher, D. A.; Irving, E.; Scheinmann, F. Org. Lett. 2003, 5, 2927.Google Scholar
  26. 26.
    Davis, F. A.; Zhang, Y.; Li, D. Tetrahedron Lett. 2007, 48, 7838.Google Scholar
  27. 27.
    Manaviazar, S.; Frigerio, M.; Bhatia, G. S.; Hummersone, M. G.; Aliev, A. E.; Hale, K. J. Org. Lett. 2006, 8, 4477.Google Scholar
  28. 28.
    Lebrun, M.-E.; Marquand, P. L.; Berthelette, C. J. Org. Chem. 2006, 71, 2009.Google Scholar
  29. 29.
    Kauer, J. C.; Sheppard, W. A. J. Org. Chem. 1967, 32, 3580.Google Scholar
  30. 30.
    Cheung, L. L.; Marumoto, S.; Anderson, C. D.; Rychnovsky, S. D. Org. Lett. 2008, 10, 3101.Google Scholar
  31. 31.
    Zhu, K.; Panek, J. S. Org. Lett. 2011, 13, 4652.Google Scholar
  32. 32.
    Krishna, P. R.; Anitha, K.; Raju, G. Tetrahedron 2013, 69, 1649.Google Scholar
  33. 33.
    Ghosh, S. ; Reddy, K. M.; Yamini, V.; Singarapu, K. K. Org. Lett. 2014, 16, 2658.Google Scholar
  34. 34.
    Reddy, K. M.; Shashidhar, J.; Ghosh, S. Org. Biomol. Chem. 2014, 12, 4002.Google Scholar
  35. 35.
    Nguyen, M. H.; Imanishi, M.; Kurogi, T.; Smith, III, A. B. J. Am. Chem. Soc. 2016, 138, 3675.Google Scholar
  36. 36.
    Li, N.-S.; Scharf, L.; Adams, E. J.; Piccirilli, J. A. J. Org. Chem. 2013, 78, 5970.Google Scholar
  37. 37.
    Quast, H.; Bieber, L. Chem. Ber. 1981, 114, 3253.Google Scholar
  38. 38.
    Kocienski, P. J.; Bell. A.; Blakemore, P. R. Synlett 2000, 365.Google Scholar
  39. 39.
    Aïssa, C. J. Org. Chem. 2006, 71, 360.Google Scholar
  40. 40.
    Fenlon, T. W.; Schwaebisch, D.; Mayweg, A. V. W.; Lee, V.; Adlington, R. M.; Baldwin, J. E. Synlett 2007, 2679.Google Scholar
  41. 41.
    Fenlon, T. W.; Jones, M. W.; Adlington, R. M.; Lee, V. Org. Biomol. Chem. 2013, 11, 8026.Google Scholar
  42. 42.
    Fuwa, H.; Suzuki, T.; Kubo, H.; Yamori, T.; Sasaki, M. Chem. Eur. J. 2011, 17, 2678.Google Scholar
  43. 43.
    Qian, S.; Zhao, G. Chem. Commun. 2012, 48, 3530.Google Scholar
  44. 44.
    Alonso, D. A.; Fuensanta, M.; Nájera, C.; Varea, M. J. Org. Chem. 2005, 70, 6404.Google Scholar
  45. 45.
    Kende, A. S.; Mendoza, J. S. Tetrahedron Lett. 1990, 31, 7105.Google Scholar
  46. 46.
    Ando, K.; Kobayashi, T.; Uchida, N. Org. Lett. 2015, 17, 2554.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Chemistry and Biomolecular Science, Faculty of EngineeringGifu UniversityGifuJapan

Personalised recommendations