Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

A microporous-mesoporous carbon with graphitic structure was developed as a matrix for the sulfur cathode of a Li–S cell using a mixed carbonate electrolyte. Sulfur was selectively introduced into the carbon micropores by a melt adsorption-solvent extraction strategy. The micropores act as solvent-restricted reactors for sulfur lithiation that promise long cycle stability. The mesopores remain unfilled and provide an ion migration pathway, while the graphitic structure contributes significantly to low-resistance electron transfer. The cathode is able to operate reversibly over 800 cycles with a 1.8 C discharge–recharge rate. This integration of a micropore reactor, a mesopore ion reservoir, and a graphitic electron conductor represents a generalized strategy to be adopted in research on advanced sulfur cathodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11(1):19–29

    Article  CAS  Google Scholar 

  2. Ji XL, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8(6):500–506

    Article  CAS  Google Scholar 

  3. Manthiram A, Fu Y, Su Y-S (2012) Challenges and prospects of lithium–sulfur batteries. Acc Chem Res 46(5):1125–1134

    Article  Google Scholar 

  4. Evers S, Nazar LF (2013) New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res 46(5):1135–1143

    Article  CAS  Google Scholar 

  5. Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032

    Article  CAS  Google Scholar 

  6. Zhang C, Wu HB, Yuan C, Guo Z, Lou XW (2012) Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew Chem Int Ed 51(38):9592–9595

    Article  CAS  Google Scholar 

  7. Chung S-H, Manthiram A (2014) Carbonized eggshell membrane as a natural polysulfide reservoir for highly reversible Li–S batteries. Adv Mater 26(9):1360–1365

    Article  CAS  Google Scholar 

  8. Shim J, Striebel KA, Cairns EJ (2002) The lithium/sulfur rechargeable cell—effects of electrode composition and solvent on cell performance. J Electrochem Soc 149(10):A1321–A1325

    Article  CAS  Google Scholar 

  9. Marmorstein D et al (2000) Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources 89(2):219–226

    Article  CAS  Google Scholar 

  10. Ryu HS et al (2006) Discharge behavior of lithium/sulfur cell with TEGDME based electrolyte at low temperature. J Power Sources 163(1):201–206

    Article  CAS  Google Scholar 

  11. Shin JH, Cairns EJ (2008) N-Methyl-(n-butyl)pyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI-poly(ethylene glycol) dimethyl ether mixture as a Li/S cell electrolyte. J Power Sources 177(2):537–545

    Article  CAS  Google Scholar 

  12. Choi YJ et al (2007) Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell. Phys Scripta T129:62–65

    Article  CAS  Google Scholar 

  13. Song MS et al (2004) Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. J Electrochem Soc 151(6):A791–A795

    Article  CAS  Google Scholar 

  14. Wang JL, Yang J, Xie JY, Xu NX (2002) A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv Mater 14(13–14):963–965

    Article  CAS  Google Scholar 

  15. Yang Y et al (2011) Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano 5(11):9187–9193

    Article  CAS  Google Scholar 

  16. Ji LW et al (2011) Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy Environ Sci 4(12):5053–5059

    Article  CAS  Google Scholar 

  17. Zheng GY, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11(10):4462–4467

    Article  CAS  Google Scholar 

  18. Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D (2011) Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li–S batteries. Adv Mater 23(47):5641–5644

    Article  CAS  Google Scholar 

  19. Guo JC, Xu YH, Wang CS (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett 11(10):4288–4294

    Article  CAS  Google Scholar 

  20. Cao YL et al (2011) Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Phys Chem Chem Phys 13(17):7660–7665

    Article  CAS  Google Scholar 

  21. Wang HL et al (2011) Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11(7):2644–2647

    Article  CAS  Google Scholar 

  22. Schuster J et al (2012) Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew Chem Int Ed 51(15):3591–3595

    Article  CAS  Google Scholar 

  23. Wang J et al (2008) Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon 46(2):229–235

    Article  CAS  Google Scholar 

  24. Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3(10):1531–1537

    Article  CAS  Google Scholar 

  25. Lai C, Gao XP, Zhang B, Yan TY, Zhou Z (2009) Synthesis and electrochemical performance of sulfur/highly porous carbon composites. J Phys Chem C 113(11):4712–4716

    Article  CAS  Google Scholar 

  26. Gao J, Lowe MA, Kiya Y, Abruna HD (2011) Effects of liquid electrolytes on the charge–discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J Phys Chem C 115(50):25132–25137

    Article  CAS  Google Scholar 

  27. Aurbach D et al (2009) On the surface chemical aspects of very high energy density, rechargeable li–sulfur batteries. J Electrochem Soc 156(8):A694–A702

    Article  CAS  Google Scholar 

  28. Hassoun J, Scrosati B (2010) A high-performance polymer tin sulfur lithium ion battery. Angew Chem Int Ed 49(13):2371–2374

    Article  CAS  Google Scholar 

  29. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 47(2):373–376

    Article  CAS  Google Scholar 

  30. Xin S et al (2012) Smaller sulfur molecules promise better lithium–sulfur batteries. J Am Chem Soc 134(45):18510–18513

    Article  CAS  Google Scholar 

  31. Cheon SE et al (2003) Rechargeable lithium sulfur battery-II. Rate capability and cycle characteristics. J Electrochem Soc 150(6):A800–A805

    Article  CAS  Google Scholar 

  32. Shinkarev VV, Fenelonov V, Kuvshinov GG (2003) Sulfur distribution on the surface of mesoporous nanofibrous carbon. Carbon 41(2):295–302

    Article  CAS  Google Scholar 

  33. Wang D-W et al (2012) A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li–S batteries. Phys Chem Chem Phys 14(24):8703–8710

    Article  CAS  Google Scholar 

  34. Chmiola J et al (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313(5794):1760–1763

    Article  CAS  Google Scholar 

  35. Wang D-W et al (2013) Carbon–sulfur composites for Li–S batteries: status and prospects. J Mater Chem A 1(33):9382–9394

    Article  CAS  Google Scholar 

  36. Cheon SE et al (2003) Rechargeable lithium sulfur battery-II. Rate capability and cycle characteristics. J Electrochem Soc 150(6):A800–A805

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangmin Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhou, G. (2017). Revealing Localized Electrochemical Transition of Sulfur in Sub-nanometer Confinement. In: Design, Fabrication and Electrochemical Performance of Nanostructured Carbon Based Materials for High-Energy Lithium–Sulfur Batteries. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-3406-0_2

Download citation

Publish with us

Policies and ethics