Skip to main content

Comparison of Different Renal Imaging Modalities: An Overview

  • Conference paper
  • First Online:
Progress in Intelligent Computing Techniques: Theory, Practice, and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 518))

Abstract

The kidneys play an important role in our health, and renal dysfunction is identified by a successive loss in renal functionality with passage of time. The term ‘uroradiology’ is used to describe imaging and interventional techniques involved in the examination of urinary tract. Imaging plays an important role for assessment of different kidney abnormalities. The choice of particular imaging technique is based on the radiation burden, cost involved, possible complications and the diagnostic yield. Various attempts have been made for improving the correctness of renal diagnosis using distinct medical imaging techniques. In this article, we explore the potential of different renal imaging techniques currently employed in clinical set-ups along with their advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barsoum, RS.: Chronic kidney disease in the developing world. N. Engl. J. Med. (2006) 997–999.

    Google Scholar 

  2. Meguid, El., Nahas, A., Bello, AK.: Chronic kidney disease: the global challenge. Lancet (2005).

    Google Scholar 

  3. World Health Organization: Preventing Chronic Disease: A Vital Investment. Geneva, WHO (2005).

    Google Scholar 

  4. Webb, A.: Introduction to Biomedical Imaging. John Wiley and Sons Inc., NY, Hoboken (2003).

    Google Scholar 

  5. Sutton, D., Grainger, RG.: A Textbook of Radiology. E.S. Livingstone, Edinburgh (2002).

    Google Scholar 

  6. Myers, GL., Miller, WG., Coresh, J., Fleming, J., Greenberg, N., Greene, T. et al.: Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clinical Chemistry (2006) 5–18.

    Google Scholar 

  7. Gans, SL., Stoker, J., Boermeester, MA.: Plain abdominal radiography in acute abdominal pain; past, present, and future. International Journal of General Medicine (2012) 525–533.

    Google Scholar 

  8. Sebastian, A., Tait, P.: Renal imaging modalities. Medicine (2007) 377–382.

    Google Scholar 

  9. Harvey, C., Hare, C., Blomley, M.: Renal Imaging Medicine. Imaging and Biopsy (2003).

    Google Scholar 

  10. Silva, AC., Morse, BG., Hara, AK., Paden, RG., Hongo, N., and Pavlicek, W.: Dual-energy (spectral) CT: applications in abdominal imaging. Radiographics (2011) 1031–1046.

    Google Scholar 

  11. Goyal, A., Sharma, R., Bhalla, AS., Gamanagatti, S., Seth, A.: Diffusion-weighted MRI in assessment of renal dysfunction. Indian J. Radiology Imaging (2012).

    Google Scholar 

  12. Squillaci, E., Manenti, G., Di Stefano, F., Miano, R., Strigari, L., Simonetti, G.: Diffusion weighted MR imaging in the evaluation of renal tumours. J. Exp. Clin. Cancer Res. (2004) 39–45.

    Google Scholar 

  13. Cova, M., Squillaci, E., Stacul, F., Manenti, G., Gava, S., Simonetti, G., et al.: Diffusion weighted MRI in the evaluation of renal lesions: Preliminary results. Br. J. Radiol. (2004).

    Google Scholar 

  14. Yoshikawa, T., Kawamitsu, H., Mitchell, DG., Ohno, Y., Ku, Y., Seo, Y., et al.: ADC measurement of abdominal organs and lesions using parallel imaging technique. Am. J. Roentgenol (2006)1521–30.

    Google Scholar 

  15. Taouli, B., Thakur, R., Mannelli, L., Babb, JS., Kim, S., Hecht, EM., et al.: Renal lesions: Characterization with diffusion–weighted imaging versus contrast–enhanced MR imaging. Radiology (2009) 398–407.

    Google Scholar 

  16. Sandrasegaran, K., Sundaram, CP., Ramaswamy, R., Akisik, FM., Rydberg, MR., Lin, C., et al.: Usefulness of diffusion–weighted imaging in the evaluation of renal masses. Am. J. Roentgenol. (2010) 438–45.

    Google Scholar 

  17. Verswijvel, G., Vandecaveye, V., Gelin, G., Vandevenne, J., Grieten, M., Horvath, M., et al.: Diffusion–weighted MR imaging in the evaluation of renal infection: Preliminary results. JBR–BTR (2002)100–103.

    Google Scholar 

  18. Fred, D., Mettler, A., Milton, J., Guiberteau, MD.: Essentials of Nuclear Medicine Imaging. Fifth ed., WB Saunders. Philadelphia (2005).

    Google Scholar 

  19. Andrews, PM. and Chen, Y.: Using Optical Coherence Tomography (OCT) to Evaluate Human Donor Kidneys Prior to and Following Transplantation. Nephrology & Therapeutics (2014).

    Google Scholar 

  20. Brezinski, M.: Characterizing arterial plaque with optical coherence tomography. Curr. Opin. Cardiol. (2002) 648–655.

    Google Scholar 

  21. Jang, IK., Bouma, B., MacNeill, B., Takano, M., Shishkov, M., et al.: In-vivo coronary plaque characteristics in patients with various clinical presentations using Optical Coherence Tomography. Circulation (2003) 373–373.

    Google Scholar 

  22. Bouma, BE., Tearney, GJ., Compton, CC., Nishioka, N.: High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography. Gastrointest Endosc. (2000) 467–474.

    Google Scholar 

  23. Chen, Y., Aguirre, AD., Hsiung, PL., Desai, S., Herz, PZ., et al.: Ultra high resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology. Endoscopy (2007) 599–605.

    Google Scholar 

  24. Welzel, J., Lankenau, E., Birngruber, R., Engelhardt, R.: Optical coherence tomography of the human skin. J. Am. Acad. Dermatol. (1997) 958–963.

    Google Scholar 

  25. Otis, LL., Everett, MJ., Sathyam, US., Colston, BW.: Optical coherence tomography: a new imaging technology for dentistry. J. Am. Dent. Assoc. (2000) 511–514.

    Google Scholar 

  26. D’Amico, AV., Weinstein, M., Li, X., Richie, JP., Fujimoto, J.: Optical coherence tomography as a method for identifying benign and malignant microscopic structures in the prostate gland. Urology (2000) 783–787.

    Google Scholar 

  27. Qian, Li., Maristela, L., Onozato: Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT), Optical Society of America (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravinder Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Kaur, R., Juneja, M. (2018). Comparison of Different Renal Imaging Modalities: An Overview. In: Sa, P., Sahoo, M., Murugappan, M., Wu, Y., Majhi, B. (eds) Progress in Intelligent Computing Techniques: Theory, Practice, and Applications. Advances in Intelligent Systems and Computing, vol 518. Springer, Singapore. https://doi.org/10.1007/978-981-10-3373-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3373-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3372-8

  • Online ISBN: 978-981-10-3373-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics