Skip to main content

Optical Imaging: How Far Can We Go

  • Chapter
  • First Online:
Personalized Pathway-Activated Systems Imaging in Oncology

Abstract

Optical imaging comprises a broad and diverse range of technology modalities, which aim to assess the morphology, dynamics, and pathophysiology state of organs, tissues, cells, organelles, and molecules, in their natural state and real time. The development of pioneer instruments for optical imaging is referenced to the seventeenth- to eighteenth-century era (circa 1632–1723), when it is presumed that Antonie van Leeuwenhoek invented and used a prototype of the light microscope (Wollman AJM, Nudd R, Hedlund EG, Leake MC, Open Biol 5:150019, http://dx.doi.org/10.1098/rsob.150019, 2016). The groundbreaking discovery and its application was reported by Leeuwenhoek and Robert Hooke (Hooke R, Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses, with observations and inquiries thereupon. Courier Corporation, New York, 1665; Baker H, Leeuwenhoek M, Philos Trans 41:503–519, doi:10.1098/rstl.1739.0085, 1739), who used a combination of stage, light source, and lenses similar to those currently used (Wollman AJM, Nudd R, Hedlund EG, Leake MC, Open Biol 5:150019, http://dx.doi.org/10.1098/rsob.150019, 2016). Fast-forward to the twentieth to twenty-first century, innovative advances underscore the extraordinary progression into imaging technologies, such as 3-D electron microscopy, confocal fluorescent imaging, mass spectrometry, bioluminescence, and optoacoustics, to name a few (Weissleder R, Nahrendorf M. Proc Natl Acad Sci 112(47):14424–14428, 2015). Collectively, the new imaging modalities enable researchers to reveal complex structures and dynamic interactive processes happening deep inside cellular compartments, which can provide invaluable basic and clinical science information. The present chapter outlines over three centuries of optical imaging technology, as it relates to the rationale that led to the development of innovative methods, which have transformed the means to observe, analyze, study, and diagnose the nature of cellular structures and functions. The paradigm shift inherent to the progressive advances of optical imaging and their impact on bench to bedside applications are accordingly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Microscopische Anatomie. 1873;9:413–8.

    Article  Google Scholar 

  2. Abbe E. VII. On the estimation of aperture in the microscope. J R Microsc Soc. 1881;1:388–423. doi:10.1111/j.1365-2818.1881.tb05909.x.

    Article  Google Scholar 

  3. Abbe E. XV. The relation of aperture and power in the microscope. J R Microsc Soc. 1883;3:790–812. doi:10.1111/j.1365-2818.1883.tb05956.x.

    Article  Google Scholar 

  4. Airy GB. On the diffraction of an object-glass with circular aperture. Trans Camb Philos Soc. 1835;5:239–91.

    Google Scholar 

  5. Aldrich MB, Chen W, Blackburn MR, Martinez-Valdez H, Datta SK, Kellems RE. Impaired germinal center maturation in adenosine deaminase deficiency. J Immunol. 2003;171 (10):5562–70.

    Google Scholar 

  6. Al-Tamaimi R, Kapila K, Al-Mulla FR, Francis IM, Al-Waheeb S, Al-Ayadhy B. Epidermal growth factor receptor mutations in nonsmall cell lung carcinoma patients in Kuwait. J Cytol. 2016;33(1):1–6.

    Article  Google Scholar 

  7. Anderson MA, Tsui A, Wall M, Huang DC, Roberts AW. Current challenges and novel treatment strategies in double hit lymphomas. Ther Adv Hematol. 2016;7(1):52–64. doi:10.1177/2040620715608091.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Axelrod D. Total internal reflection fluorescence microscopy in cell biology. Traffic. 2001;2:764–74.

    Article  CAS  PubMed  Google Scholar 

  9. Bachmann M, Fiederling F, Bastmeyer M. Practical limitations of superresolution imaging due to conventional sample preparation revealed by a direct comparison of CLSM, SIM and dSTORM. J Microsc. 2016;262(3):306–15.

    Article  CAS  PubMed  Google Scholar 

  10. Baerlocher VI, de Jong G, Lansdorp PM. Flow cytometry and FISH to measure the average length of telomeres (flow FISH). Nat Protoc. 2006;1(5):2365–76.

    Article  CAS  PubMed  Google Scholar 

  11. Baker H, Leeuwenhoek M. An account of Mr. Leeuwenhoek’s microscopes by Mr. Henry Baker F. R. S. 1739. Philos Trans. 1739;41:503–19. doi:10.1098/rstl.1739.0085.

    Article  Google Scholar 

  12. Bao G, Rhee WJ, Tsourkas A. Fluorescent probes for live-cell RNA detection. Annu Rev Biomed Eng. 2009;11:25–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barcena M, Koster AJ. Electron tomography in life science. Semin Cell Dev Biol. 2009;20:920–30.

    Article  CAS  PubMed  Google Scholar 

  14. Shaffer L.G and Bejjani BA (2004) A cytogeneticist’s perspective on genomic microarrays. Hum Reprod Update 10 (3), 221-226

    Google Scholar 

  15. Betzig E. Proposed method for molecular optical imaging. Opt Lett. 1995;20(3):237–9.

    Article  CAS  PubMed  Google Scholar 

  16. Betzig E, Patterson G, Sougrat R, Lindwasser O, Olenych S, Bonifacino J, Davidson M, Lippincott-Schwartz J, Hess H. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313(5793):1642–5.

    Article  CAS  PubMed  Google Scholar 

  17. Bianchini P, Peres C, Oneto M, Galiani S, Vicidomini G, Disparo A. STED Nanoscopy: A glimpse into the future. Cell Tissue Res. 2015;360:143–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bjornson ZB, Nolan GP, Fantl WJ. Single-cell mass cytometry for analysis of immune system functional states. Curr Opin Immunol. 2013;25(4):484–94.

    Article  CAS  PubMed  Google Scholar 

  19. Buglio D, Khaskhely NM, Voo KS, Martinez-Valdez H, Liu YJ, Younes A. HDAC11 plays an essential role in regulating OX40 ligand expression in Hodgkin lymphoma. Blood. 2011;117:2910–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science. 1994;263(5148):802–5.

    Article  CAS  PubMed  Google Scholar 

  21. Challa A, Eliopoulos AG, Holder MJ, Burguete AS, Pound JD, Chamba A, Grafton G, Armitage RJ, Gregory CD, Martinez-Valdez H, Young L, Gordon J. Population depletion activates autonomous CD154-dependent survival in biopsylike Burkitt lymphoma cells. Blood. 2002;99(9):3411–8.

    Article  CAS  PubMed  Google Scholar 

  22. Challen GA, Boles N, Lin KK, Goodell MA. Mouse hematopoietic stem cell identification and analysis. Cytometry. 2009;75(1):14–24.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chou KF, Dennis AM. Förster resonance energy transfer between quantum dot donors and quantum dot acceptors. Sensors. 2015;15(6):13288–325.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Collins AR. The comet assay: A heavenly method! Mutagenesis. 2015;30(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  25. Coons AH, Kaplan MH. Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med. 1950;91(1):1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coons AH, Creech HJ, Jones RN, Berliner E. The demonstration of pneumococcal Antigen in tissues by the use of Fluorescent antibody. J Immunol. 1942;45(3):159–70.

    CAS  Google Scholar 

  27. Cox S. Super-resolution imaging in live cells. Dev Biol. 2015;401:175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dalton AJ, Felix MD. Cytologic and cytochemical characteristics of the Golgi substance of epithelial cells of the epididymis in situ, in homogenates and after isolation. Am J Anat. 1954;94:171–207.

    Article  CAS  PubMed  Google Scholar 

  29. de Broglie L. The wave nature of the electron. Nobel Lecture. 1929; http://www.nobelprize.org/nobel_prizes/physics/laureates/1929/broglie-lecture.pdf

  30. Dickson RM, Cubbit TRY, Moerner WE. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature. 1997;388(6640):355–8.

    Article  CAS  PubMed  Google Scholar 

  31. Ersson C, Möller L. The effects on DNA migration of altering parameters in the comet assay protocol such as agarose density, electrophoresis conditions and durations of the enzyme or the alkaline treatments. Mutagenesis. 2011;26(6):689–95.

    Article  CAS  PubMed  Google Scholar 

  32. Escobar PA, Smith MT, Vasishta A, Hubbard AE, Zhang L. Leukaemia-specific chromosome damage detected by comet with fluorescence in situ hybridization (comet-FISH). Mutagenesis. 2007;22(5):321–7.

    Article  CAS  PubMed  Google Scholar 

  33. Evans JW, Chang JA, Giaccia AJ, Pinkel D, Brown JM. The use of fluorescence in situ hybridization combined with premature chromosome condensation for the identification of chromosome damage. Br J Cancer. 1991;63(4):517–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fan B, Li X, Chen D, Peng H, Wang J, Chen J. Development of microfluidic systems enabling high-throughput single-cell protein characterization. Sensors. 2016;16(2):232. doi:10.3390/s16020232.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ferrai C, Xie QS, Luraghi P, Munari D, Ramirez F, Branco MR, Pombo A, Crippa MP. Poised transcription factories prime silent uPA gene prior to activation. PLoS Biol. 2010;8(1):e1000270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Fienberg HG, Nolan GP. Mass cytometry to decipher the mechanism of nongenetic drug resistance in cancer. Curr Top Microbiol Immunol. 2015;377:85–94.

    Google Scholar 

  37. Förster T. Zwischenmolekulare energiewanderung und Fluoreszenz. Ann Phys. 1948;437:55–75.

    Article  Google Scholar 

  38. Francés V, Pandrau-Garcia D, Guret C, Ho S, Wang Z, Duvert V, Saeland S, Martinez-Valdez H. A surrogate 15 kDa JC kappa protein is expressed in combination with mu heavy chain by human B cell precursors. EMBO J. 1994;13(24):5937–43.

    PubMed  PubMed Central  Google Scholar 

  39. Franzini-Armstrong C. Electron microscopy: from 2D to 3D images with special reference to muscle. Eur J Transl Myol Basic Appl Myol. 2015;25(1):5–13.

    Article  Google Scholar 

  40. Fritzky L, Lagunoff D. Advanced methods in fluorescence microscopy. Anal Cell Pathol. 2013;36(1-2):5–17.

    Article  CAS  Google Scholar 

  41. Fuller KA, Bennett S, Hui H, Chakera A, Erber WN. Development of a robust immuno-S-FISH protocol using imaging flow cytometry. Cytometry. 2016;89:720–30.

    Article  CAS  PubMed  Google Scholar 

  42. Gao NA, WZ YU, Wang XX, Sun JR, Yu N, Liu ZY, Liu XD, Liu RT, Feng R, Ding BT, Sang T, Guo NJ. Significance of ETV6 rearrangement in acute promyelocytic leukemia with t(15;17)/promyelocytic leukemia/retinoic acid receptor alpha. Oncol Lett. 2016;11(6):3953–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Garcia-Sagredo JM. Fifty years of cytogenetics: a parallel view of the evolution of cytogenetics and genotoxicology. Biochim Biophys Acta. 2008;1779(6-7):363–75.

    Article  CAS  PubMed  Google Scholar 

  44. Giepmans BN, Adams SR, Ellisman MH, Tsien RY. The fluorescent toolbox for assessing protein location and function. Science. 2006;312(5771):217–24.

    Article  CAS  PubMed  Google Scholar 

  45. Glei M, Hovhannisyan G, Pool-Zobel BL. Use of Comet-FISH in the study of DNA damage and repair: Review. Mutat Res. 2009;681(1):33–43.

    Article  CAS  PubMed  Google Scholar 

  46. Guccini S, Lombardi S, Pisani A, Piaggi S, Scarpato R. Effects of spindle poisons in peripheral human lymphocytes by the in vitro cytokinesis-block micronucleus assay. Mutagenesis. 2012;27(6):749–58.

    Article  CAS  PubMed  Google Scholar 

  47. Guo J, Hanawalt, Spivak G. Comet-FISH with strand-specific probes reveals transcription-coupled repair of 8-oxoGuanine in human cells. Nucleic Acids Res. 2013;41(16):7700–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gutierrez-Rodrigues F, Santaana-Lemos BA, Scheucher PS, Alves-Paiva RM, Calado RT. Direct comparison of flow-FISH and qPCR as diagnostic tests for telomere length measurement in humans. PLoS One. 2014;9(11):e113747. doi:10.1371/journal.pone.0113747.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Harris KM, Perry E, Bourne J, Feinberg M, Ostroff L, Hurlburt J. Uniform serial sectioning for transmission electron microscopy. J Neurosci. 2006;26:12101–3.

    Article  CAS  PubMed  Google Scholar 

  50. Heintzman R, Ficz G. Breaking the resolution limit in light microscopy. Brief Funct Genomic Proteomic. 2006;5(4):289–301.

    Article  Google Scholar 

  51. Hell SW. Microscopy and its focal switch. Nat Methods. 2009;6(1):24–32.

    Article  CAS  PubMed  Google Scholar 

  52. Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulating emission: stimulated-emission-depletion. Opt Lett. 1994;19(11):780–2.

    Article  CAS  PubMed  Google Scholar 

  53. Hiroka Y, Sadat JW, Agard DA. The use of a charge-coupled device for quantitative optical microscopy. Science. 1987;238:36–41.

    Article  Google Scholar 

  54. Hochreiter B, Garcia AP, Schmid JA. Fluorescent proteins as genetically encoded FRET biosensors in life sciences. Sensors. 2015;15(10):26281–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Holst F. Estrogen receptor alpha gene amplification in breast cancer: 25 years of debate. World J Clin Oncol. 2016;7(2):160–73.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hooke R. Micrographia: Or some physiological descriptions of minute bodies made by magnifying glasses, with observations and inquiries thereupon. New York: Courier Corporation; 1665.

    Book  Google Scholar 

  57. Hsu JH, Zeng H, Lemeke KH, Polysos AA, Weier JF, Wang M, Lawin-O’Brien AR, Weier HU, O’Brien B. Chromosome-specific DNA repeats: rapid identification in silico and validation using fluorescence in situ hybridization. Int J Mol Sci. 2012;14(1):57–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Huxley HE. The double array of filaments in cross-striated muscle. J Biophys Biochem Cytol. 1957;3:631–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ichikawa K, Aritaka N, Ogura K, Hosone M, Ota Y, Sato E, Komatsu N, Hirano T. Utility of immunohistochemistry with an antibody against MYC at the initial diagnosis of follicular lymphoma, grade 3A, for predicting a more aggressive clinical course: a case report and review of the literature. Int J Clin Exp Pathol. 2012;8(6):7559–64.

    Google Scholar 

  60. Itzkovitz S, van Oudenaarden A. Validating transcripts with probes and imaging technology. Nat Methods. 2011;8:S12–9. doi:10.1038/nmeth.1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ji Z, Zhang L. Chromosomics: Detection of numerical and structural alterations in all 24 human chromosomes simultaneously using a novel OctoChrome FISH assay. J Vis Exp. 2012; 6 (60):e3619, 1–6. Doi: 10.3791/3619.

    Google Scholar 

  62. Jordan R, Edington J, Evans HH, Schwartz JL. Detection of chromosome aberrations by FISH as a function of cell division cycle (harlequin-FISH). Biotechniques. 1999;26(3):532–4.

    CAS  PubMed  Google Scholar 

  63. Kearney L. Multiplex-FISH (M-FISH): technique, developments and applications. Cytogenet Genome Res. 2006;114(3-4):189–98.

    Article  CAS  PubMed  Google Scholar 

  64. Kitamura A, Nagata K, Kinjo M. Conformational analysis of misfolded protein aggregation by FRET and live-cell imaging techniques. Int J Mol Sci. 2015;16(3):6076–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Knoll M, Ruska E. Das elektronenmikroskop. Z Phys. 1932;78:318–39.

    Article  CAS  Google Scholar 

  66. Knott G, Genoud C. Is the EM dead? J Cell Sci. 2013;126(20):4545–52. doi:10.1242/jcs.124123.

    Article  CAS  PubMed  Google Scholar 

  67. Köhler A. Ein neues Beleuchtungsverfahren für mikrophotographische Zwecke. Z Wiss Mikrosk. 1893;10:433–40.

    Google Scholar 

  68. Krijnse Locker J, Schmid SL. Integrated electron microscopy: Super-duper resolution. PLoS Biol. 2013;11:e1001639.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Krysko DV, Vanden Berghe T, D'Herde K, Vandenabeele P. Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods. 2008;44(3):205–21.

    Article  CAS  PubMed  Google Scholar 

  70. Kuwajima M, Mendenhall JM, Harris KM. Large-volume reconstruction of brain tissue from high-resolution serial section images acquired by SEM-based scanning transmission electron microscopy. Methods Mol Biol. 2013a;950:253–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kuwajima M, Mendenhall JM, Lindsey LF, Harris KM. Automated transmission-mode scanning electron microscopy (tSEM) for large volume analysis at nanoscale resolution. PLoS One. 2013b;8:e59573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lakowicz JR. Principles of fluorescence spectroscopy. 3rd ed. New York: Springer New York; 2006. p. 1–954.

    Book  Google Scholar 

  73. Lawrence EJ, Boucher E, Mandato CA. Mitochondria-cytoskeleton associations in mammalian cytokinesis. Cell Div. 2016;11:3. doi:10.1186/s13008-016-0015-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Leahy M, Thompson K, Zafar H, Alexandrov S, Foley M, O’Flatharta C, Dockery P. Functional imaging for regenerative medicine. Stem Cell Res Ther. 2016;7(1):57–69.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lippincott-Schwartz J. Profile of Eric Betzig, Stefan Hell, and W.E. Moerner, 2014 Nobel laureates in chemistry. Proc Natl Acad Sci U S A. 2015; 112 (9), 2630–2632.

    Google Scholar 

  76. Liu YJ, de Bouteiller O, Arpin C, Brière F, Galibert L, Ho S, Martinez-Valdez H, Banchereau J, Lebecque S. Normal human IgD+IgM- germinal center B cells can express up to 80 mutations in the variable region of their IgD transcripts. Immunity. 1996;4(6):603–13.

    Article  CAS  PubMed  Google Scholar 

  77. Liu Z, Lavis LD, Betzig E. Imaging live-cell dynamics and structure at the single-molecule level. Mol Cell. 2015;58(4):644–59.

    Article  CAS  PubMed  Google Scholar 

  78. Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A. 1998;95(12):6803–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lovell JF, Chen J, Jarvi MT, Cao WG, Allen AD, Liu Y, Tidwell TT, Wilson BC, Zheng G. FRET quenching of photosensitizer singlet oxygen generation. J Phys Chem B. 2009;113(10):3203–11.

    Article  CAS  PubMed  Google Scholar 

  80. Ma W, Ortiz-Quintero B, Rangel R, McKeller MR, Herrera-Rodriguez S, Castillo EF, Schluns KS, Hall M, Zhang H, Suh WK, Okada H, Mak TW, Zhou Y, Blackburn MR, Martinez-Valdez H. Coordinate activation of inflammatory gene networks, alveolar destruction and neonatal death in AKNA deficient mice. Cell Res. 2011;21(11):1564–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ma W, McKeller MR, Rangel R, Ortiz-Quintero B, Blackburn MR, Martinez-Valdez H. Spare PRELI gene loci: failsafe chromosome insurance? PLoS One. 2012;7(5):e37949. doi:10.1371/journal.pone.0037949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mahadevaiah SK, Costa Y, Turner JM. Using RNA FISH to study gene expression during mammalian meiosis. Methods Mol Biol. 2009;558:433–44.

    Article  CAS  PubMed  Google Scholar 

  83. Maierhofer C, Jentsch I, Lederer G, Fauth C, Speicher MR. Multicolor FISH in two and three dimensions for clastogenic analyses. Mutagenesis. 2002;17(6):523–7.

    Article  CAS  PubMed  Google Scholar 

  84. Maki N. Newt lens transdifferentiation: from lentectomy to immuno-FISH. Methods Mol Biol. 2015;1290:81–9.

    Article  PubMed  Google Scholar 

  85. Malisan F, Brière F, Bridon JM, Harindranath N, Mills FC, Max EE, Banchereau J, Martinez-Valdez H. Interleukin-10 induces immunoglobulin G isotype switch recombination in human CD40-activated naive B lymphocytes. J Exp Med. 1996;183(3):937–47.

    Article  CAS  PubMed  Google Scholar 

  86. Manti L, Durante M, Grossi G, Ortenzia O, Pugliese M, Scampoli, and Gialanela G (2006) Measurements of metaphase and interphase chromosome aberrations transmitted through early cell replication rounds in human lymphocytes exposed to low-LET protons and high-LET 12C ions. Mutat Res 596 (1-2), 151-165

    Google Scholar 

  87. Matteucci E, Giampietro O. Flow cytometry study of leukocyte function: analytical comparison of methods and their applicability to clinical research. Curr Med Chem. 2008;15(6):596–603.

    Article  CAS  PubMed  Google Scholar 

  88. McEwan BF, Marko M. The emergence of electron tomography as an important tool for investigating cellular ultrastructure. J Histochem Cytochem. 2001;49:553–64.

    Article  Google Scholar 

  89. McKeller MR, Herrera-Rodriguez S, Ma W, Ortiz-Quintero B, Rangel R, Candé C, Sims-Mourtada JC, Melnikova V, Kashi C, Phan LM, Chen Z, Huang P, Dunner Jr K, Kroemer G Singh KK, Martinez-Valdez H. Vital function of PRELI and essential requirement of its LEA motif. Cell Death Dis. 2010; 1:e21; doi 10.1038, PMID: 21364629

    Google Scholar 

  90. Menendez JA, Ma R, Campisi J, Lupu R. Heregulin, a new regulator of telomere length in human cells. Oncotarget. 2015;6(37):39422–36.

    PubMed  PubMed Central  Google Scholar 

  91. Miyawaki A, Niino Y. Molecular spies for bioimaging-fluorescent protein-based probes. Mol Cell. 2015;58(4):632–43.

    Article  CAS  PubMed  Google Scholar 

  92. Miyawaki A, Tsien RY. Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol. 2000;327:472–500.

    Article  CAS  PubMed  Google Scholar 

  93. Newman SB, Borysko E, Swerdlow M. New sectioning techniques for light and electron microscopy. Science. 1949;110:66–8.

    Article  CAS  PubMed  Google Scholar 

  94. Nishimune H, Badawi Y, Mori S, Shigemoto K. Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice. Sci Rep. 2016;6:27935. doi:10.1038/srep27935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nomarski G, Weill A. Application a` la me´tallographie des me´thodes interfe´rentielles a` deux ondes polarise´es. Rev Metal. 1955;2:121–8.

    Google Scholar 

  96. Pala FS, Moquet JE, Edwards AA, Lloyd DC. In vitro transmission of chromosomal aberrations through mitosis in human lymphocytes. Mutat Res. 2001;474(1-2):139–46.

    Article  CAS  PubMed  Google Scholar 

  97. Palade GE, Porter KR. Studies on the endoplasmic reticulum I. Its identification in cells in situ. J Exp Med. 1954;100:641–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Park S, Choi S, Ahn B. DNA strand breaks in mitotic germ cells of caenorhabditis elegans evaluated by comet assay. Mol Cell. 2016;39(3):204–10.

    Article  CAS  Google Scholar 

  99. Peddie CJ, Collinson LM. Exploring the third dimension: Volume electron microscopy comes of age. Micron. 2014;61:9–19.

    Article  PubMed  Google Scholar 

  100. Perkins GA, Frey TG. Recent structural insight into mitochondria gained by microscopy. Micron. 2000;31:97–111.

    Article  CAS  PubMed  Google Scholar 

  101. Peters DG, Yatsenko SA, Surti U, Rajkovic A. Recent advances of genomic testing in perinatal medicine. Semin Perinatol. 2015;39(1):44–54.

    Article  PubMed  Google Scholar 

  102. Petit S, Meary F, Pibouin L, Jeanny JC, Fernandes I, Pollard A, Hotton D, Berdal A, Babajko S. Autoregulatory loop of Msx1 expression involving its antisense transcripts. J Cell Physiol. 2009;220(2):303–10.

    Article  CAS  PubMed  Google Scholar 

  103. Ploem JS. The use of a vertical illuminator with interchangeable dichroic mirrors for fluorescence microscopy with incidental light. Z Wiss Mikrosk. 1967;68:129–42.

    CAS  PubMed  Google Scholar 

  104. Porter KR, Blum J. A study in microtomy for electron microscopy. Anat Rec. 1953;117:685–710.

    Article  CAS  PubMed  Google Scholar 

  105. Porter KR, Claude A, Fullam EF. A study of tissue culture cells by electron microscopy: methods and preliminary observations. J Exp Med. 1945;81:233–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Potter AJ, Wener MH. Flow cytometric analysis of fluorescence in situ hybridization with dye dilution and DNA staining (flow-FISH-DDD) to determine telomere length dynamics in proliferating cells. Cytometry A. 2005;68(1):53–8.

    Article  PubMed  Google Scholar 

  107. Poulsen TS, Espersen ML, Kofoed V, Dabetic T, Høegdal E, Balslev E. Comparison of fluorescence in situ hybridization and chromogenic in situ hybridization for low and high throughput HER2 genetic testing. Int J Breast Cancer. 2013;368731:1–5. doi:10.1155/2013/368731.

    Article  CAS  Google Scholar 

  108. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ. Primary structure of the Aequorea victoria green-fluorescent protein. Gene. 1992;111(2):229–33.

    Article  CAS  PubMed  Google Scholar 

  109. Rangel R, McKeller MR, Sims-Mourtada JC, Kashi C, Cain K, Wieder ED, Molldrem JJ, Pham LV, Ford RJ, Yotnda P, Guret C, Francés V, Martinez-Valdez H. Assembly of the kappa preB receptor requires a V kappa-like protein encoded by a germline transcript. J Biol Chem. 2005;280(18):17807–14.

    Article  CAS  PubMed  Google Scholar 

  110. Rayleigh L, XV. On the theory of optical images, with special reference to the microscope. Philos Mag Ser 5. 1896;42:167–95.

    Article  Google Scholar 

  111. Riegel M. Human molecular cytogenetics: From cells to nucleotides. Genet Mol Biol. 2014;37(suppl 1):194–209.

    Article  PubMed  Google Scholar 

  112. Ruska H, Borries BV, Ruska E. Die Bedeutung der ubermikroskopie fur die virusforschung. Arch Gesamte Virusforsch. 1939;1:155–69.

    Article  Google Scholar 

  113. Sanderson MJ, Smith I, Parker I, Bootman MD. Fluorescence microscopy. Cold Spring Harb Protoc. 2014; doi:10.1101/pdb.top071795; PMID 25275114.

  114. Sapsford KE, Berti L, Medintz IL. Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations. Angew Chem Int Ed. 2006;45(28):4562–89.

    Article  CAS  Google Scholar 

  115. Sato K. Microdevice in cellular pathology: Microfluidic platforms for fluorescence in situ hybridization and analysis of circulating tumor cells. Anal Sci. 2015;31(9):867–73.

    Article  CAS  PubMed  Google Scholar 

  116. Schulz KR, Danna EA, Krutzik PO, Nolan GP. Single-cell phospho-protein analysis by flow cytometry. Curr Protoc Immunol. 2012;8(17):1–20.

    Google Scholar 

  117. Shapiro HM. Flow cytometric probes of early events in cell activation. Cytometry. 1981;1(5):301–12.

    Article  CAS  PubMed  Google Scholar 

  118. Shearer LA, Anderson LK, de Jong H, Smit S, Goicoechea JL, Roe BA, Hua A, Giovannoni JJ, Stack SM. Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome. G3 (Bethesda). 2014;4(8):1395–405. doi:10.1534/g3.114.011197.

    Article  CAS  Google Scholar 

  119. Shimomura O, Beers JR, Johnson FH. The cyanide activation of odontosyllis luminescence. J Cell Physiol. 1964;64:15–21.

    Article  CAS  Google Scholar 

  120. Shrestha D, Janei A, Nagy P, Vereb G, Szöllõsi J. Understanding FRET as a research tool for cellular studies. Int J Mol Sci. 2015;6(4):6718–56.

    Article  CAS  Google Scholar 

  121. Siddiqa A, Sims-Mourtada JC, Guzman-Rojas L, Rangel R, Guret C, Madrid-Marina V, Sun Y, Martinez-Valdez H. Regulation of CD40 and CD40 ligand by the AT-hook transcription factor AKNA. Nature. 2001; 410: 383–87.

    Google Scholar 

  122. Sims-Mourtada JC, Bruce S, McKeller MR, Rangel R, Guzman-Rojas L, Cain K, Lopez C, Zimonjic DB, Popescu NC, Gordon J, Wilkinson MF, Martinez-Valdez H. The human AKNA gene expresses multiple transcripts and protein isoforms as a result of alternative promoter usage, splicing, and polyadenylation. DNA Cell Biol. 2005;24(5):325–38.

    Article  CAS  PubMed  Google Scholar 

  123. Smith F. Microscopic interferometry. Research. 1955;8:385–95.

    Google Scholar 

  124. Spitzer MH, Nolan GP. Mass cytometry: Single cells, many features. Cell. 2016;165(4):780–91.

    Article  CAS  PubMed  Google Scholar 

  125. Spivak G. New developments in comet-FISH. Mutagenesis. 2015;30(1):5–9.

    Article  CAS  PubMed  Google Scholar 

  126. Spring KR. Scientific imaging with digital cameras. Biotechniques. 2000;29:70–2, 74, 76

    Google Scholar 

  127. Starborg T, Lu Y, Huffman A, Holmes DF, Kadler KE. Electron microscope 3D reconstruction of branched collagen fibrils in vivo. Scand J Med Sci Sports. 2009;19(4):547–52.

    Article  CAS  PubMed  Google Scholar 

  128. Sun Y, Durrin LK, Krontiris TG. Specific interaction of PML bodies with the TP53 locus in Jurkat interphase nuclei. Genomics. 2003;82(2):250–2.

    Article  CAS  PubMed  Google Scholar 

  129. Sun J, Shen X, Li Y, Guo Z, Zhu W, Zuo L, Zhao J, Gu L, Gong J, Li J. Therapeutic potential to modify the mucus barrier in inflammatory bowel disease. Nutrients. 2016;8(1):44–59. doi:10.3390/nu8010044.

  130. Takaoka E, Sonobe H, Akimaru K, Sakamoto S, Shuin T, Dalbarata M, Taguchi T, Tominaga A. Multiple sites of highly amplified DNA sequences detected by molecular cytogenetic analysis in HS-RMS-2, a new pleomorphic rhabdomyosarcoma cell line. Am J Cancer Res. 2012;2(2):141–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Tawn EJ, Curwen GB, Jonas P, Riddell AE, Hodgson L. Chromosome aberrations determined by sFISH and G-banding in lymphocytes from workers with internal deposits of plutonium. Int J Radiat Biol. 2016;92(6):312–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Templado C, Uroz L, Estop A. New insights on the origin and relevance of aneuploidy in human spermatozoa. Mol Hum Reprod. 2013;19(10):634–43.

    Article  CAS  PubMed  Google Scholar 

  133. van Rijk A, Mason D, Jones M, Cabeçadas J, Crespo M, Cigudosa JC, Garcia JF, Leoncini L, Cocco M, Hansmann ML, Mottok A. Translocation detection in lymphoma diagnosis by split-signal FISH: a standardised approach. J Hematop. 2008;1(2):119–26.

    Article  PubMed  PubMed Central  Google Scholar 

  134. van Rijk A, Svenstroup-Poulsen T, Jones M, Cabeçadas J, Cigudosa JC, Leoncini L, Mottok A, Bergman CC, Pouliou E, Dutoit SH, van Krieken HJ. Double staining CISH as a useful alternative to split-signal FISH in lymphoma diagnostics. Haematologica. 2009;95(2):247–52.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ventura RA, Martin-Subero JI, Jones M, McParland J, Gesk S, Mason DY, Siebert R. FISH analysis for the detection of lymphoma-associated chromosomal abnormalities in routine paraffin-embedded tissue. J Mol Diagn. 2006;8(2):141–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Verdaasdonk JS, Stephens AD, Haase J, Bloom K. Bending the rules: Widefield microscopy and the Abbe limit of resolution. J Cell Physiol. 2014;229(2):132–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Vihinen H, Belevich I, Jokitalo E. Three dimensional electron microscopy of cellular organelles by serial block face SEM and ET. Microsc Anal. 2013;27:7–10.

    Google Scholar 

  138. Volpi EV, Bridger JM FISH glossary: an overview of the fluorescence in situ hybridization technique. Biotechniques. 2008; 45 (4): 385–86, 388–90 passim.

    Google Scholar 

  139. Voss TC, John S, Hager GL. Single-cell analysis of glucocorticoid receptor action reveals that stochastic post-chromatin association mechanisms regulate ligand-specific transcription. Mol Endocrinol. 2006;20(11):2641–55.

    Article  CAS  PubMed  Google Scholar 

  140. Wan TS. Cancer cytogenetics: methodology revisited. Ann Lab Med. 2014;34(6):413–25.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Weissleder R, Nahrendorf M. Advancing biomedical imaging. Proc Natl Acad Sci. 2015;112(47):14424–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wollman AJM, Nudd R, Hedlund EG, Leake MC. From Animaculum to single molecules: 300 years of the light microscope. Open Biol. 2016;5:150019. http://dx.doi.org/10.1098/rsob.150019

    Article  CAS  Google Scholar 

  143. Yamamura H, Suzuki Y, Imaizumi Y. New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy. J Pharmacol Sci. 2015;128(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  144. Yang F, Shao C, Vedanarayanan V, Ehrlich M. Cytogenetic and immuno-FISH analysis of the 4q subtelomeric region, which is associated with facioscapulohumeral muscular dystrophy. Chromosoma. 2004;112(7):350–9.

    Article  CAS  PubMed  Google Scholar 

  145. Younis A, Ramazan F, Huang YJ, Lim KB. FISH and GISH: Molecular cytogenetic tools and their applications in ornamental plants. Plant Cell Rep. 2015;34(9):1477–88.

    Article  CAS  PubMed  Google Scholar 

  146. Yuan X, Pang S. Structured illumination temporal compressive microscopy. Biomed Opt Express. 2016;7(3):746–58.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects. Physica. 1942;9:686–98. doi:10.1016/S0031-8914(42) 80035-X.

    Article  Google Scholar 

  148. Zernike F. How I discovered phase contrast. Science. 1955;121:345–9. doi:10.1126/science.121.3141.345.

    Article  CAS  PubMed  Google Scholar 

  149. Zhao W, Choi YL, Song JY, Zhu Y, Xu Q, Zhang F, Jiang L, Cheng J, Zheng G, Mao M. ALK, ROS1 and RET rearrangements in lung squamous cell carcinoma are very rare. Lung Cancer. 2016;94:22–7.

    Article  PubMed  Google Scholar 

  150. Zinner R, Teller K, Versteeg R, Cremer T, Cremer M. Biochemistry meets nuclear architecture: multicolor immuno-FISH for co-localization analysis of chromosome segments and differentially expressed gene loci with various histone methylations. Adv Enzym Regul. 2007;47:223–41.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Martinez-Valdez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ma, W., Herrera-Rodriguez, S., Martinez-Valdez, H. (2017). Optical Imaging: How Far Can We Go. In: Inoue, T., Yang, D., Huang, G. (eds) Personalized Pathway-Activated Systems Imaging in Oncology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3349-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3349-0_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3348-3

  • Online ISBN: 978-981-10-3349-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics