PET Radiotracers for Tumor Imaging

  • Ming-Rong ZhangEmail author


Positron emission tomography (PET) is a nuclear medicine imaging technique that produces a three-dimensional functional image of the living body. This system detects pairs of gamma rays emitted indirectly by a positron-emitting radiotracer, which is introduced into the body as a biologically active tracer. Three-dimensional images of radiotracer concentration within the body are then constructed by computer graphic analysis. PET is both a medical and study tool used in clinical oncology (medical imaging and diagnosis of tumors and the search for metastases) and in preclinical animal studies, where it allows repeated scans of the same subject. PET is particularly valuable in cancer research because it increases the statistical quality of the data (research subjects can act as their own controls) and substantially reduces the number of animals needed for individual studies.


Vascular Endothelial Growth Factor Positron Emission Tomography Positron Emission Tomography Imaging Amino Acid Analog Positron Emission Tomography Radiotracer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author thanks Dr. Masayuki Fujinaga (National Institute of Radiological Sciences) for assistance in the preparation of this manuscript.


  1. 1.
    Ido T, Wan C-N, Fowler JS, et al. Labeled 2-deoxy-D-glucose analogs, 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-glucose. J Label Compd Radiopharm. 1978;14:171–83.CrossRefGoogle Scholar
  2. 2.
    Reivich M, Kuhl D, Wolf A, et al. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res. 1979;44:127–37.CrossRefPubMedGoogle Scholar
  3. 3.
    Yonekura Y, Benua RS, Brill AB, et al. Increased accumulation of 2-deoxy-2-[18F]Fluoro-D-glucose in liver metastases from colon carcinoma. J Nucl Med. 1982;23(12):1133–7.PubMedGoogle Scholar
  4. 4.
    Buck AK, Schirrmeister H, Mattfeldt T, et al. Biological characterisation of breast cancer by means of PET. Eur J Nucl Med Mol Imaging Suppl. 2004;1:S80–7.CrossRefGoogle Scholar
  5. 5.
    Delbeke D. Oncological applications of FDG PET imaging. J Nucl Med. 1999;40(10):1706–15.PubMedGoogle Scholar
  6. 6.
    Buck AK, Schirrmeister H, Mattfeldt T, et al. Biological characterisation of breast cancer by means of PET. Eur J Nucl Med Mol Imaging. 2004;31(Suppl 1):S80–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Gambhir SS, Czernin J, Schwimmer J, et al. A tabulated summary of the FDG PET literature. J Nucl Med. 2001;42(5 Suppl):1S–93S.PubMedGoogle Scholar
  8. 8.
    Higashi T, Tamaki N, Torizuka T, et al. FDG uptake, GLUT-1 glucose transporter and cellularity in human pancreatic tumors. J Nucl Med. 1998;39(10):1727–35.PubMedGoogle Scholar
  9. 9.
    Higashi T, Saga T, Nakamoto Y, et al. Relationship between retention index in dual-phase (18)F-FDG PET, and hexokinase-II and glucose transporter-1 expression in pancreatic cancer. J Nucl Med. 2002;43(2):173–80.PubMedGoogle Scholar
  10. 10.
    De Gaetano AM, Rufini V, Castaldi P, et al. Clinical applications of (18)F-FDG PET in the management of hepatobiliary and pancreatic tumors. Abdom Imaging. 2012;37(6):983–1003.CrossRefPubMedGoogle Scholar
  11. 11.
    Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med. 2005;46(6):983–95.PubMedGoogle Scholar
  12. 12.
    Bleeker-Rovers CP, Vos FJ, Corstens FH, et al. Imaging of infectious diseases using [18F] fluorodeoxyglucose PET. Q J Nucl Med Mol Imaging. 2008;52(1):17–29.PubMedGoogle Scholar
  13. 13.
    Tarkin JM, Joshi FR, Rudd JH. PET imaging of inflammation in atherosclerosis. Nat Rev Cardiol. 2014;11(8):443–57.CrossRefPubMedGoogle Scholar
  14. 14.
    Glaudemans AW, Enting RH, Heesters MA, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40(4):615–35.CrossRefPubMedGoogle Scholar
  15. 15.
    Jager PL, Vaalburg W, Pruim J, et al. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med. 2001;42(3):432–45.PubMedGoogle Scholar
  16. 16.
    Crippa F, Alessi A, Serafini GL. PET with radiolabeled amino acid. Q J Nucl Med Mol Imaging. 2012;56(2):151–62.PubMedGoogle Scholar
  17. 17.
    Gulyás B, Halldin C. New PET radiopharmaceuticals beyond FDG for brain tumor imaging. Q J Nucl Med Mol Imaging. 2012;56(2):173–90.PubMedGoogle Scholar
  18. 18.
    Inoue T, Shibasaki T, Oriuchi N, et al. 18F alpha-methyl tyrosine PET studies in patients with brain tumors. J Nucl Med. 1999;40(3):399–405.PubMedGoogle Scholar
  19. 19.
    Wester HJ, Herz M, Weber W, et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med. 1999;40(1):205–12.PubMedGoogle Scholar
  20. 20.
    Shoup TM, Olson J, Hoffman JM, et al. Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med. 1999;40(2):331–8.PubMedGoogle Scholar
  21. 21.
    Schuster DM, Nanni C, Fanti S, et al. Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid: physiologic uptake patterns, incidental findings, and variants that may simulate disease. J Nucl Med. 2014;55(12):1986–92.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Martiat P, Ferrant A, Labar D, et al. In vivo measurement of carbon-11 thymidine uptake in non-Hodgkin’s lymphoma using positron emission tomography. J Nucl Med. 1988;29(10):1633–7.PubMedGoogle Scholar
  23. 23.
    Tehrani OS, Shields AF. PET imaging of proliferation with pyrimidines. J Nucl Med. 2013;54(6):903–12.CrossRefPubMedGoogle Scholar
  24. 24.
    Wagner M, Seitz U, Buck A, et al. 3'-[18F]fluoro-3'-deoxythymidine ([18F]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-Cell lymphoma model and in the human disease. Cancer Res. 2003;63(10):2681–7.PubMedGoogle Scholar
  25. 25.
    Chalkidou A, Landau DB, Odell EW, et al. Correlation between Ki-67 immunohistochemistry and 18F-fluorothymidine uptake in patients with cancer: a systematic review and meta-analysis. Eur J Cancer. 2012;48(18):3499–513.CrossRefPubMedGoogle Scholar
  26. 26.
    Brogsitter C, Zöphel K, Kotzerke J. 18F-Choline, 11C-choline and 11C-acetate PET/CT: comparative analysis for imaging prostate cancer patients. Eur J Nucl Med Mol Imaging. 2013;40(Suppl 1):S18–27.CrossRefPubMedGoogle Scholar
  27. 27.
    Yoshimoto M, Waki A, Yonekura Y, et al. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol. 2001;28(2):117–22.CrossRefPubMedGoogle Scholar
  28. 28.
    Deford-Watts LM, Mintz A, Kridel SJ. The potential of 11C-acetate PET for monitoring the Fatty acid synthesis pathway in Tumors. Curr Pharm Biotechnol. 2013;14(3):300–12.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Liu D, Khong PL, Gao Y. Radiation dosimetry of whole-body dual tracer 18F-FDG and 11C-acetate PET/CT for hepatocellular carcinoma. J Nucl Med. 2016;57(6):907. pii: jnumed.115.165944.Google Scholar
  30. 30.
    Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med. 1998;39(6):990–5.PubMedGoogle Scholar
  31. 31.
    Hara T. 18F-fluorocholine: a new oncologic PET tracer. J Nucl Med. 2001;42(12):1815–7.PubMedGoogle Scholar
  32. 32.
    Hara T, Kosaka N, Kishi H. Development of (18)F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med. 2002;43(2):187–99.PubMedGoogle Scholar
  33. 33.
    Valk PE, Mathis CA, Prados MD, et al. Hypoxia in human gliomas: demonstration by PET with fluorine-18-fluoromisonidazole. J Nucl Med. 1992;33(12):2133–7.PubMedGoogle Scholar
  34. 34.
    Lewis JS, Welch MJ. PET imaging of hypoxia. Q J Nucl Med. 2001;45(2):183–8.PubMedGoogle Scholar
  35. 35.
    Fleming IN, Manavaki R, Blower PJ, et al. Imaging tumour hypoxia with positron emission tomography. Br J Cancer. 2015;112(2):238–50.CrossRefPubMedGoogle Scholar
  36. 36.
    Peeters SG, Zegers CM, Yaromina A, et al. Current preclinical and clinical applications of hypoxia PET imaging using 2-nitroimidazoles. Q J Nucl Med Mol Imaging. 2015;59(1):39–57.PubMedGoogle Scholar
  37. 37.
    Postema EJ, McEwan AJ, Riauka TA, et al. Initial results of hypoxia imaging using 1-alpha-D: -(5-deoxy-5-[18F]-fluoroarabinofuranosyl)-2-nitroimidazole (18F-FAZA). Eur J Nucl Med Mol Imaging. 2009;36(10):1565–73.CrossRefPubMedGoogle Scholar
  38. 38.
    Saga T, Inubushi M, Koizumi M, et al. Prognostic value of PET/CT with 18F-fluoroazomycin arabinoside for patients with head and neck squamous cell carcinomas receiving chemoradiotherapy. Ann Nucl Med. 2016;30(3):217–24.CrossRefPubMedGoogle Scholar
  39. 39.
    Fujibayashi Y, Taniuchi H, Yonekura Y, et al. Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med. 1997;38(7):1155–60.PubMedGoogle Scholar
  40. 40.
    Lewis J, Laforest R, Buettner T, et al. Copper-64-diacetyl-bis(N4-methylthiosemicarbazone): an agent for radiotherapy. Proc Natl Acad Sci U S A. 2001;98(3):1206–11.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Furukawa T, Yuan Q, Jin ZH, et al. Comparison of intratumoral FDG and Cu-ATSM distributions in cancer tissue originated spheroid (CTOS) xenografts, a tumor model retaining the original tumor properties. Nucl Med Biol. 2014;41(8):653–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Ambrosini V, Fani M, Fanti S, et al. Radiopeptide imaging and therapy in Europe. J Nucl Med. 2011;52(Suppl 2):42S–55S.CrossRefPubMedGoogle Scholar
  43. 43.
    Ambrosini V, Campana D, Polverari G, et al. Prognostic value of 68Ga-DOTANOC PET/CT SUVmax in patients with neuroendocrine tumors of the pancreas. J Nucl Med. 2015;56(12):1843–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Lu X, Wang RF. A concise review of current radiopharmaceuticals in tumor angiogenesis imaging. Curr Pharm Des. 2012;18(8):1032–40.CrossRefPubMedGoogle Scholar
  45. 45.
    Johnbeck CB, Knigge U, Kjær A. PET tracers for somatostatin receptor imaging of neuroendocrine tumors: current status and review of the literature. Future Oncol. 2014;10(14):2259–77.CrossRefPubMedGoogle Scholar
  46. 46.
    Chen H, Niu G, Wu H, et al. Clinical application of radiolabeled RGD peptides for PET imaging of integrin αvβ3. Theranostics. 2016;6(1):78–92.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jubb AM, Harris AL. Biomarkers to predict the clinical efficacy of bevacizumab in cancer. Lancet Oncol. 2010;11(12):1172–83.CrossRefPubMedGoogle Scholar
  48. 48.
    van der Bilt AR, Terwisscha van Scheltinga AG, Timmer-Bosscha H, et al. Measurement of tumor VEGF-A levels with 89Zr-bevacizumab PET as an early biomarker for the antiangiogenic effect of everolimus treatment in an ovarian cancer xenograft model. Clin Cancer Res. 2012;18(22):6306–14.CrossRefPubMedGoogle Scholar
  49. 49.
    Nagengast WB, Lub-de Hooge MN, Oosting SF, et al. VEGF-PET imaging is a noninvasive biomarker showing differential changes in the tumor during sunitinib treatment. Cancer Res. 2011;71(1):143–53.CrossRefPubMedGoogle Scholar
  50. 50.
    Xie L, Yui J, Fujinaga M, et al. Molecular imaging of ectopic metabotropic glutamate 1 receptor in melanoma with a positron emission tomography radioprobe (18)F-FITM. Int J Cancer. 2014;135(8):1852–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Fujinaga M, Xie L, Yamasaki T, et al. Synthesis and evaluation of 4-halogeno-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-[11C]methylbenzamide for imaging of metabotropic glutamate 1 receptor in melanoma. J Med Chem. 2015;58(3):1513–23.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Radiopharmaceutics DevelopmentNational Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and TechnologyInage-kuJapan

Personalised recommendations