Skip to main content

Epigenetic Regulator, Re-emerging Antimetabolites with Novel Mechanism of Action (Azacitidine and Decitabine): Clinical Pharmacology and Therapeutic Results

  • Chapter
  • First Online:
Chemotherapy for Leukemia
  • 1354 Accesses

Abstract

Hypomethylating agents, such as azacitidine (AZA) and decitabine (DAC), are antimetabolites with a very unique mechanism of action as epigenetic regulator. After being incorporated into the DNA, these inhibit the enzyme, DNA methyltransferase, resulting in the hypomethylation of DNA, and change the expression of many genes. AZA is also incorporated into RNA, which will also disturb protein synthesis. AZA and DAC are now used to treat some hematological neoplasms, especially for the treatment of myelodysplastic syndromes (MDS). After several clinical trials, AZA became the first agent shown to prolong overall survival for higher-risk MDS. Treatment with AZA or DAC is also showed to improve cytopenia in MDS and to provide longer leukemia-free survival than other treatment. Although the precise mechanism is not revealed yet, AZA is widely used to treat MDS and, recently, acute leukemia of the elderly. Oral AZA is also under clinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esterller M. Epigenetics in cancer. N Engl J Med. 2008;358(11):1148–59.

    Article  Google Scholar 

  2. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349(21):2042–54.

    Article  CAS  PubMed  Google Scholar 

  3. Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361(11):1058–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ko M, Huang Y, Jankowska AM, et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010;468(7325):839–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Karon M, Sieger L, Leimbrock S, et al. 5-Azacytidine: a new active agent for the treatment of acute leukemia. Blood. 1973;42(3):359–65.

    CAS  PubMed  Google Scholar 

  7. McCredie KB, Bodey GP, Burgess MA, et al. Treatment of acute leukemia with 5-azacytidine (NSC-102816). Cancer Chemother Rep. 1973;57(3):319–23.

    CAS  PubMed  Google Scholar 

  8. Israili AH, Vogler WR, Mingioli ES, et al. The disposition and pharmacokinetics in humans of 5-azacytidine administered intravenously as a bolus or by continuous infusion. Cancer Res. 1976;36(4):1453–61.

    CAS  PubMed  Google Scholar 

  9. Beller RE, Mastrangelo MJ, Engstrom PF, et al. Clinical trial with subcutaneously administered 5-azacytidine (NSC-102816). Cancer Chemother Rep. 1974;58(2):217–22.

    Google Scholar 

  10. Armitage JO, Burns CP. Treatment of refractory adult acute nonlymphoblastic leukemia with subcutaneous 5-azacytidine. Cancer Treat Rep. 1977;61(9):1721–3.

    CAS  PubMed  Google Scholar 

  11. Ley TJ, DeSimone J, Noguchi CT, et al. 5-Azacytidine increases gamma-globin synthesis and reduces the proportion of dense cells in patients with sickle cell anemia. Blood. 1983;62(2):370–80.

    CAS  PubMed  Google Scholar 

  12. Li LH, Olin EJ, Buskirk HH. Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res. 1970;30(11):2760–9.

    CAS  PubMed  Google Scholar 

  13. Glover AB, Leyland-Jonecs B. Biochemistry of azacitidine: a review. Cancer Treat Rep. 1987;71(10):959–64.

    CAS  PubMed  Google Scholar 

  14. Cihák A, Weiss JW, Pitot HC. Characterization of polyribosomes and maturation of ribosomal RNA in hepatoma cells treated with 5-azacytidine. Cancer Res. 1974;34(11):3003–9.

    PubMed  Google Scholar 

  15. Reichaman M, Penman S. The mechanism of inhibition of protein synthesis by 5-azacytidine in HeLa cells. Biochim Biophys Acta. 1973;324(2):282–9.

    Article  Google Scholar 

  16. Cihák A. Biological effects of 5-azacytidine in eukaryotes. Oncolgy. 1974;30(5):405–22.

    Article  Google Scholar 

  17. Lu LJ, Randerath K. Mechanism of 5-azacytidine-induced transfer RNA cytosine-5-methyltransferase deficiency. Cancer Res. 1980;40(8 Pt 1):2701–5.

    CAS  PubMed  Google Scholar 

  18. Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer. 2008;123(19):8–13.

    Article  CAS  PubMed  Google Scholar 

  19. Cheson BD, Bennett JM, Kantarjian H, et al. Report of an International Working Group to standardize response criteria for myelodysplastic syndromes. Blood. 2000;96(12):3671–4.

    CAS  PubMed  Google Scholar 

  20. Silverman LR, McKenzie DR, Peterson BL, et al. Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J Clin Oncol. 2006;24(24):3895–903.

    Article  CAS  PubMed  Google Scholar 

  21. Silverman LR, Holland JF, Weinberg RS, et al. Effects of treatment with 5-azacytidine on the in vivo and in vitro hematopoiesis in patients with myelodysplastic syndromes. Leukemia. 1993;7(Suppl 1):21–9.

    PubMed  Google Scholar 

  22. Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002;20(10):2429–40.

    Article  CAS  PubMed  Google Scholar 

  23. Fenaux P, Mufi GJ, Hellstrom-Lindberg E, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079–88.

    CAS  PubMed  Google Scholar 

  25. Wijermans P, Lübbert M, Verhoef G, et al. Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol. 2000;18(5):956–62.

    Article  CAS  PubMed  Google Scholar 

  26. Kantarjian H, Issa JP, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer. 2006;106(8):1794–803.

    Article  CAS  PubMed  Google Scholar 

  27. Lubbert M, Suciu S, Baila L, et al. Low-dose decitabine versus best supportive care in elderly patients with intermediate- or high-risk myelodysplastic syndrome (MDS) ineligible for intensive chemotherapy: final results of the randomized phase III study of the European Organisation for Research and Treatment of Cancer Leukemia Group and the German MDS Study Group. J Clin Oncol. 2011;29(15):1987–96.

    Article  PubMed  Google Scholar 

  28. Issa JP, Garcia-Manero G, Giles FJ, et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood. 2004;103(5):1635–40.

    Article  CAS  PubMed  Google Scholar 

  29. Kantarjian H, Oki Y, Garcia-Manero G, et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood. 2007;109(1):52–7.

    Article  CAS  PubMed  Google Scholar 

  30. Steensma DP, Baer MR, Slack JL, et al. Multicenter study of decitabine administered daily for 5 days every 4 weeks to adults with myelodysplastic syndromes: the alternative dosing for outpatient treatment (ADOPT) trial. J Clin Oncol. 2009;27(23):3842–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ziemba A, Hayes E, Freeman 3rd BB, et al. Development of an oral form of azacytidine: 2′3′5′ triacetyl-5-azacytidine. Chemother Res Pract. 2011;2011:965826.

    PubMed  PubMed Central  Google Scholar 

  32. Garcia-Manero G, Stoltz ML, Ward MR, et al. A pilot pharmacokinetic study of oral azacitidine. Leukemia. 2008;22(9):1680–4.

    Article  CAS  PubMed  Google Scholar 

  33. Garcia-Manero G, Gore SD, Cogle C, et al. Phase I study of oral azacitidine in myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myeloid leukemia. J Clin Oncol. 2011;29(18):2521–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O’Dwyer K, Maslak P. Azacitidine and the beginnings of therapeutic epigenetic modulation. Expert Opin Pharmacother. 2008;9(11):1981–6.

    Article  PubMed  Google Scholar 

  35. Cashen AF, Shah AK, Todt L, et al. Pharmacokinetics of decitabine administered as a 3-h infusion to patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Cancer Chemother Pharmacol. 2008;61(5):759–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Miyazaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sato, S., Miyazaki, Y. (2017). Epigenetic Regulator, Re-emerging Antimetabolites with Novel Mechanism of Action (Azacitidine and Decitabine): Clinical Pharmacology and Therapeutic Results. In: Ueda, T. (eds) Chemotherapy for Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-10-3332-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3332-2_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3330-8

  • Online ISBN: 978-981-10-3332-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics