Skip to main content

Magnetic Nanoparticles: Functionalization and Manufacturing of Pluripotent Stem Cells

  • Chapter
  • First Online:
Advances in Biomaterials for Biomedical Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 66))

Abstract

Regenerative medicine uses cell alone or in combination with carrier to deliver at the required site for restoring the normal functions of diseased or degenerated tissue. Various strategies to restore tissue functions involve specific cell types, scaffolds and delivery processes that are still in developmental stage. Obtaining sufficient quantity of cells by non-invasive approach for the application in regenerative medicine is still a challenge. Pluripotent stem cells (PSCs), including embryonic stem cells and induced pluripotent stem cells (iPSCs), possess the inherent ability of self-renewal and differentiation into many cell types. In particular, iPSCs are of a special interest because patient-derived iPSCs have the ability to reproduce patient-specific clinical conditions. The development of manufacturing systems for PSCs, including cell culture engineering, is a challenging research field for the clinical application of PSCs such as in regenerative medicine. One of these manufacturing systems uses magnetic nanoparticles which are well known for their application in magnetic resonance imaging and magnetic hyperthermia. Besides, this chapter is focused on the basics of magnetic nanoparticles, its functionalization and further applications of a magnetic force-based cell manufacturing system for pluripotent stem cells. Indeed, we have developed a procedure in which cells are labeled with magnetite cationic liposomes via electrostatic interaction between the positively charged liposomes and the target cells. The culture system may provide a useful tool for studying the behavior of PSCs and an efficient way of PSCs manufacturing for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three dimensional

PSC:

Pluripotent stem cells

iPSCs:

Induced pluripotent stem cells

ESCs:

Embryonic stem cells

EBs:

Embryoid bodies

mESCs:

Mouse embryonic stem cells

mPSCs:

Mouse pluripotent stem cells

Mag-TE:

Magnetic force-based tissue engineering

MEFs:

Mouse embryonic fibroblasts

MNPs:

Magnetic nanoparticles

NPs:

Nanoparticles

SPM:

Superparamagnetic nanoparticles

CTAB:

Cetyltrimethyl ammonium bromide

PLGA:

Poly(lactic-coglycolic acid)

PVA:

Polyvinyl alcohol

PEG:

Polyethylene glycol

PAA:

Polyacrylic acid

NIPAAM:

N-isopropyl acrylamide

PEI:

Polyethyleneamine

PVP:

Polyvinyl pyrrolidone

MCLs:

Magnetite cationic liposomes

MRI:

Magnetic resonance imaging

TMAG:

N-(α-trimethylammonioacetyl)-didodecyl-D- glutamate chloride

DLPC:

Dilauroylphosphatidylcholine

DOPE:

Dioleoylphosphati- dylethanolamine

LIF:

Leukaemia inhibitory factor

BMP-4:

Bone morphogenetic protein-4

TGF-β:

Transforming growth factor-β

bFGF:

Basic fibroblast growth factor

AP+:

Alkaline phosphatase-positive

References

  • Ankamwar B, Lai TC, Huang JH, Liu RS, Hsiao M, Chen CH, Hwu YK (2010) Biocompatibility of Fe(3)O(4) nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology 21(7):75102. doi:10.1088/0957-4484/21/7/075102

    Article  Google Scholar 

  • Bhat S, Tripathi A, Kumar A (2011) Supermacroprous chitosan-agarose-gelatin cryogels: in vitro characterization and in vivo assessment for cartilage tissue engineering. J Royal Society, Interface/Royal Society 8(57):540–554. doi:10.1098/rsif.2010.0455

    Article  Google Scholar 

  • Blakemore R (1975) Magnetotactic bacteria. Science (New York, NY) 190(4212):377–379

    Article  Google Scholar 

  • Bokkelen GV (2013) The application of regenerative medicine products and technologies toward areas of significant medical need—improving clinical outcomes and reducing costs. http://alliancerm.org/sites/default/files/ARM-Natl-Strat-Apr13.pdf

  • Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19(12):1141–1147. doi:10.1038/nbt1201-1141

    Article  Google Scholar 

  • Carpenter EE (2001) Iron nanoparticles as potential magnetic carriers. J Magn Magn Mater 225(1–2):17–20. doi:10.1016/S0304-8853(00)01222-1

    Article  Google Scholar 

  • Cartmell SH, Dobson J, Verschueren SB, El Haj AJ (2002) Development of magnetic particle techniques for long-term culture of bone cells with intermittent mechanical activation. IEEE Trans Nanobiosci 1(2):92–97

    Article  Google Scholar 

  • Chen M, Yamamuro S, Farrell D, Majetich SA (2003) Gold-coated iron nanoparticles for biomedical applications. J Appl Phys 93(10):7551–7553. doi:10.1063/1.1555312

    Article  Google Scholar 

  • Chou SW, Shau YH, Wu PC, Yang YS, Shieh DB, Chen CC (2010) In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc 132(38):13270–13278. doi:10.1021/ja1035013

    Article  Google Scholar 

  • Corchero JL, Villaverde A (2009) Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol 27(8):468–476. doi:10.1016/j.tibtech.2009.04.003

    Article  Google Scholar 

  • Deng YH, Yang WL, Wang CC, Fu SK (2003) A novel approach for preparation of thermoresponsive polymer magnetic microspheres with core-shell structure. Adv Mater 15(20):1729- + . doi:10.1002/adma.200305459

  • Dobson J (2008) Remote control of cellular behaviour with magnetic nanoparticles. Nat Nanotechnol 3(3):139–143. doi:10.1038/nnano.2008.39

    Article  Google Scholar 

  • Dobson J, Cartmell SH, Keramane A, El Haj AJ (2006) Principles and design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening. IEEE Trans Nanobiosci 5(3):173–177

    Article  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021. doi:10.1016/j.biomaterials.2004.10.012

    Article  Google Scholar 

  • Hafeli UO, Riffle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP, Bardenstein D (2009) Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm 6(5):1417–1428. doi:10.1021/mp900083m

    Article  Google Scholar 

  • Healy KE, McDevitt TC, Murphy WL, Nerem RM (2013) Engineering the emergence of stem cell therapeutics. Sci Transl Med 5(207):207ed217. doi:10.1126/scitranslmed.3007609

  • Horie M, Ito A, Kiyohara T, Kawabe Y, Kamihira M (2010) E-cadherin gene-engineered feeder systems for supporting undifferentiated growth of mouse embryonic stem cells. J Biosci Bioeng 110(5):582–587. doi:10.1016/j.jbiosc.2010.06.002

    Article  Google Scholar 

  • Horie M, Ito A, Maki T, Kawabe Y, Kamihira M (2011) Magnetic separation of cells from developing embryoid bodies using magnetite cationic liposomes. J Biosci Bioeng 112(2):184–187. doi:10.1016/j.jbiosc.2011.04.011

    Article  Google Scholar 

  • Horie M, Ito A, Kawabe Y, Kamihira M (2013) A genetically engineered STO feeder system expressing E-cadherin and leukemia inhibitory factor for mouse pluripotent stem cell culture. J Bioprocess Biotechniques 03(01). doi:10.4172/2155-9821.s3-001

  • Horie M, Ito A, Maki T, Kawabe Y, Kamihira M (2014) Magnetically labeled feeder system for mouse pluripotent stem cell culture. J Biosci Bioeng. doi:10.1016/j.jbiosc.2014.10.020

    Google Scholar 

  • Ino K, Ito A, Kumazawa H, Kagami H, Ueda M, Honda H (2007) Incorporation of capillary-like structures into dermal cell sheets constructed by magnetic force-based tissue engineering. J Chem Eng Jpn 40(1):51–58. doi:10.1252/Jcej.40.51

    Article  Google Scholar 

  • Ito A, Kamihira M (2011) Tissue engineering using magnetite nanoparticles. Prog Mol Biol Transl Sci 104:355–395. doi:10.1016/b978-0-12-416020-0.00009-7

    Article  Google Scholar 

  • Ito A, Shinkai M, Honda H, Kobayashi T (2001) Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther 8(9):649–654. doi:10.1038/sj.cgt.7700357

    Article  Google Scholar 

  • Ito A, Nakahara Y, Tanaka K, Kuga Y, Honda H, Kobayashi T (2003) Time course of biodistribution and heat generation of magnetite cationic liposomes in mouse model. Jpn J Hyperthermic Oncol 19(3):151–159

    Article  Google Scholar 

  • Ito A, Hayashida M, Honda H, Hata K, Kagami H, Ueda M, Kobayashi T (2004a) Construction and harvest of multilayered keratinocyte sheets using magnetite nanoparticles and magnetic force. Tissue Eng 10(5–6):873–880. doi:10.1089/1076327041348446

    Article  Google Scholar 

  • Ito A, Hibino E, Honda H, K-i Hata, Kagami H, Ueda M, Kobayashi T (2004b) A new methodology of mesenchymal stem cell expansion using magnetic nanoparticles. Biochem Eng J 20(2–3):119–125. doi:10.1016/j.bej.2003.09.018

    Article  Google Scholar 

  • Ito A, Takizawa Y, Honda H, Hata K, Kagami H, Ueda M, Kobayashi T (2004c) Tissue engineering using magnetite nanoparticles and magnetic force: heterotypic layers of cocultured hepatocytes and endothelial cells. Tissue Eng 10(5–6):833–840. doi:10.1089/1076327041348301

    Article  Google Scholar 

  • Ito A, Hibino E, Kobayashi C, Terasaki H, Kagami H, Ueda M, Kobayashi T, Honda H (2005a) Construction and delivery of tissue-engineered human retinal pigment epithelial cell sheets, using magnetite nanoparticles and magnetic force. Tissue Eng 11(3–4):489–496. doi:10.1089/ten.2005.11.489

    Article  Google Scholar 

  • Ito A, Hibino E, Shimizu K, Kobayashi T, Yamada Y, Hibi H, Ueda M, Honda H (2005b) Magnetic force-based mesenchymal stem cell expansion using antibody-conjugated magnetoliposomes. J Biomed Mater Res B Appl Biomater 75(2):320–327. doi:10.1002/jbm.b.30304

    Article  Google Scholar 

  • Ito A, Ino K, Hayashida M, Kobayashi T, Matsunuma H, Kagami H, Ueda M, Honda H (2005c) Novel methodology for fabrication of tissue-engineered tubular constructs using magnetite nanoparticles and magnetic force. Tissue Eng 11(9–10):1553–1561. doi:10.1089/ten.2005.11.1553

    Article  Google Scholar 

  • Ito A, Shinkai M, Honda H, Kobayashi T (2005d) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100(1):1–11. doi:10.1263/jbb.100.1

    Article  Google Scholar 

  • Ito A, Jitsunobu H, Kawabe Y, Kamihira M (2007) Construction of heterotypic cell sheets by magnetic force-based 3-D coculture of HepG2 and NIH3T3 cells. J Biosci Bioeng 104(5):371–378. doi:10.1263/jbb.104.371

    Article  Google Scholar 

  • Ito A, Jitsunobu H, Kawabe Y, Ijima H, Kamihira M (2009) Magnetic separation of cells in coculture systems using magnetite cationic liposomes. Tissue Eng Part C, Methods 15(3):413–423. doi:10.1089/ten.tec.2008.0496

    Article  Google Scholar 

  • Karakoti AS, Das S, Thevuthasan S, Seal S (2011) PEGylated inorganic nanoparticles. Angew Chem Int Ed Engl 50(9):1980–1994. doi:10.1002/anie.201002969

  • Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed Engl 47(44):8438–8441. doi:10.1002/anie.200802469

    Article  Google Scholar 

  • Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Magnetite biomineralization in the human brain. Proc Natl Acad Sci USA 89(16):7683–7687

    Article  Google Scholar 

  • Kurosawa H (2007) Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng 103(5):389–398. doi:10.1263/jbb.103.389

    Article  Google Scholar 

  • Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473(7347):326–335. doi:10.1038/nature10147

    Article  Google Scholar 

  • Lamer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72(11):4847–4854. doi:10.1021/Ja01167a001

    Article  Google Scholar 

  • Larue L, Antos C, Butz S, Huber O, Delmas V, Dominis M, Kemler R (1996) A role for cadherins in tissue formation. Development (Cambridge, England) 122(10):3185–3194

    Google Scholar 

  • Lee J, Isobe T, Senna M (1996) Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J Colloid Interf Sci 177(2):490–494. doi:10.1006/Jcis.1996.0062

    Article  Google Scholar 

  • Li W, Ma N, Ong LL, Nesselmann C, Klopsch C, Ladilov Y, Furlani D, Piechaczek C, Moebius JM, Lutzow K, Lendlein A, Stamm C, Li RK, Steinhoff G (2007) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells (Dayton, Ohio) 25(8):2118–2127. doi:10.1634/stemcells.2006-0771

  • Li W, Chen S, Li JY (2015) Human induced pluripotent stem cells in parkinson’s disease: a novel cell source of cell therapy and disease modeling. Prog Neurobiol 134:161–177. doi:10.1016/j.pneurobio.2015.09.009

    Article  Google Scholar 

  • Lim JW, Bodnar A (2002) Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics 2(9):1187–1203. doi:10.1002/1615-9861(200209)2:9<1187:aid-prot1187>3.0.co;2-t

    Article  Google Scholar 

  • Lu Y, Shi C, Hu MJ, Xu YJ, Yu L, Wen LP, Zhao Y, Xu WP, Yu SH (2010) Magnetic alloy nanorings loaded with gold nanoparticles: synthesis and applications as multimodal imaging contrast agents. Adv Funct Mater 20(21):3701–3706. doi:10.1002/adfm.201001201

    Article  Google Scholar 

  • Luo D, Saltzman WM (2000) Enhancement of transfection by physical concentration of DNA at the cell surface. Nat Biotechnol 18(8):893–895. doi:10.1038/78523

    Article  Google Scholar 

  • Mahmoudi M, Sheibani S, Milani AS, Rezaee F, Gauberti M, Dinarvand R, Vali H (2015) Crucial role of the protein corona for the specific targeting of nanoparticles. Nanomedicine (London, England) 10(2):215–226. doi:10.2217/nnm.14.69

  • Mahtab F, Yu Y, Lam JWY, Liu JZ, Zhang B, Lu P, Zhang XX, Tang BZ (2011) Fabrication of silica nanoparticles with both efficient fluorescence and strong magnetization, and exploration of their biological applications. Adv Funct Mater 21(9):1733–1740. doi:10.1002/adfm.201002572

    Article  Google Scholar 

  • Martin I, Simmons PJ, Williams DF (2014) Manufacturing challenges in regenerative medicine. Sci Transl Med 6(232):232fs216. doi:10.1126/scitranslmed.3008558

  • Miltenyi S, Muller W, Weichel W, Radbruch A (1990) High gradient magnetic cell separation with MACS. Cytometry 11(2):231–238. doi:10.1002/cyto.990110203

    Article  Google Scholar 

  • Moore LR, Zborowski M, Sun L, Chalmers JJ (1998) Lymphocyte fractionation using immunomagnetic colloid and a dipole magnet flow cell sorter. J Biochem Biophys Methods 37(1–2):11–33

    Article  Google Scholar 

  • Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610. doi:10.1146/Annurev.Matsci.30.1.545

    Article  Google Scholar 

  • Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132(4):661–680. doi:10.1016/j.cell.2008.02.008

    Article  Google Scholar 

  • Okada Y, Takano TY, Kobayashi N, Hayashi A, Yonekura M, Nishiyama Y, Abe T, Yoshida T, Yamamoto TA, Seino S, Doi T (2011) New protein purification system using gold-magnetic beads and a novel peptide tag, “the Methionine Tag”. Bioconjugate Chem 22(5):887–893. doi:10.1021/bc100429d

  • Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55(3):403–419

    Article  Google Scholar 

  • Pagliuca FW, Millman JR, Gurtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159(2):428–439. doi:10.1016/j.cell.2014.09.040

    Article  Google Scholar 

  • Passier R, van Laake LW, Mummery CL (2008) Stem-cell-based therapy and lessons from the heart. Nature 453(7193):322–329. doi:10.1038/nature07040

    Article  Google Scholar 

  • Radbruch A, Mechtold B, Thiel A, Miltenyi S, Pfluger E (1994) High-gradient magnetic cell sorting. Methods Cell Biol 42 Pt B: 387–403

    Google Scholar 

  • Ruiz-Hernandez E, Baeza A, Vallet-Regi M (2011) Smart drug delivery through DNA/magnetic nanoparticle gates. ACS Nano 5(2):1259–1266. doi:10.1021/nn1029229

    Article  Google Scholar 

  • Sahoo Y, Pizem H, Fried T, Golodnitsky D, Burstein L, Sukenik CN, Markovich G (2001) Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids. Langmuir 17(25):7907–7911. doi:10.1021/La010703+

    Article  Google Scholar 

  • Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan WH (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17(10):2900–2906. doi:10.1021/La0008636

    Article  Google Scholar 

  • Shimizu K, Ito A, Lee JK, Yoshida T, Miwa K, Ishiguro H, Numaguchi Y, Murohara T, Kodama I, Honda H (2007a) Construction of multi-layered cardiomyocyte sheets using magnetite nanoparticles and magnetic force. Biotechnol Bioeng 96(4):803–809. doi:10.1002/bit.21094

    Article  Google Scholar 

  • Shimizu K, Ito A, Yoshida T, Yamada Y, Ueda M, Honda H (2007b) Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force. J Biomed Mater Res B Appl Biomater 82(2):471–480. doi:10.1002/jbm.b.30752

    Article  Google Scholar 

  • Shinkai M (2002) Functional magnetic particles for medical application. J Biosci Bioeng 94(6):606–613

    Article  Google Scholar 

  • Shinkai M, Yanase M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (1996) Intracellular hyperthermia for cancer using magnetite cationic liposomes: in vitro study. Jpn J Cancer Res: Gann 87(11):1179–1183

    Article  Google Scholar 

  • Singh N (2009) Conference scene—nanotoxicology: health and environmental impacts. Nanomedicine (London, England) 4(4):385–390. doi:10.2217/nnm.09.20

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    Article  Google Scholar 

  • Takeichi M (1991) Cadherin cell adhesion receptors as a morphogenetic regulator. Science (New York, NY) 251(5000):1451–1455

    Article  Google Scholar 

  • Tartaj P, Morales Puerto M, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R182–197

    Article  Google Scholar 

  • Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C, Landfester K, Schild H, Maskos M, Knauer SK, Stauber RH (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8(10):772–781. doi:10.1038/nnano.2013.181

    Article  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science (New York, NY) 282(5391):1145–1147

    Article  Google Scholar 

  • Tiwari A (2013) Nanomaterials in drug delivery, imaging, and tissue engineering. In: Tripathi A, Melo JS, D’Souza, SF. (ed) Magnetic nanoparticles in tissue regeneration. WILEY-Scrivener, pp 443–492

    Google Scholar 

  • Tripathi A, Kumar A (2011) Multi-featured macroporous agarose-alginate cryogel: synthesis and characterization for bioengineering applications. Macromol Biosci 11(1):22–35. doi:10.1002/mabi.201000286

    Article  Google Scholar 

  • Tripathi A, Melo JS, D’Souza SF (2013) Magnetic nanoparticles in tissue regeneration. In: Nanomaterials in drug delivery, imaging, and tissue engineering. doi:10.1002/9781118644591.ch14

  • Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96(4):1533–1554

    Article  Google Scholar 

  • Vanhee S, Vandekerckhove B (2016) Pluripotent stem cell based gene therapy for hematological diseases. Crit Rev Oncol/Hematol 97:238–246. doi:10.1016/j.critrevonc.2015.08.022

    Article  Google Scholar 

  • Veranth JM, Kaser EG, Veranth MM, Koch M, Yost GS (2007) Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol 4:2. doi:10.1186/1743-8977-4-2

    Article  Google Scholar 

  • Weissman IL (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science (New York, NY) 287(5457):1442–1446

    Article  Google Scholar 

  • Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10(6):678–684. doi:10.1016/j.stem.2012.05.005

    Article  Google Scholar 

  • Yang J, Lee CH, Park J, Seo S, Lim EK, Song YJ, Suh JS, Yoon HG, Huh YM, Haam S (2007) Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer. J Mater Chem 17(26):2695–2699. doi:10.1039/b702538f

    Article  Google Scholar 

  • Yee C, Kataby G, Ulman A, Prozorov T, White H, King A, Rafailovich M, Sokolov J, Gedanken A (1999) Self-assembled monolayers of alkanesulfonic and -phosphonic acids on amorphous iron oxide nanoparticles. Langmuir 15(21):7111–7115. doi:10.1021/La990663y

    Article  Google Scholar 

  • Yoshida J, Mizuno M, Wakabayashi T (2004) Interferon-beta gene therapy for cancer: basic research to clinical application. Cancer Sci 95(11):858–865

    Article  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science (New York, NY) 318(5858):1917–1920. doi:10.1126/science.1151526

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanobu Horie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Horie, M., Tripathi, A., Ito, A., Kawabe, Y., Kamihira, M. (2017). Magnetic Nanoparticles: Functionalization and Manufacturing of Pluripotent Stem Cells. In: Tripathi, A., Melo, J. (eds) Advances in Biomaterials for Biomedical Applications. Advanced Structured Materials, vol 66. Springer, Singapore. https://doi.org/10.1007/978-981-10-3328-5_9

Download citation

Publish with us

Policies and ethics