Advertisement

Wearable Haptic Based Pattern Feedback Sleeve System

  • Anuradha RanasingheEmail author
  • Kaspar Althoefer
  • Prokar Dasgupta
  • Atulya Nagar
  • Thrishantha Nanayakkara
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 547)

Abstract

This paper presents how humans trained in primitive haptic based patterns using a wearable sleeve, can recognize their scaling and shifting. The wearable sleeve consisted of 7 vibro-actuators to stimulate subjects arm to convey the primitive haptic based patterns. The focus of this study to understand (1) whether the human somatosensory system uses primitive patterns that can be modeled using Gaussian like functions to represent haptic perceptions, (2) whether these primitive representations are localized (cannot be shifted along the skin) and magnitude specific (cannot be scaled). These insights will help to develop more efficient haptic feedback systems using a small number of templates to be learnt to encode complex haptic messages.

Keywords

Haptics Human-robot interactions Vibro-actuator arrays Guidelines and algorithm 

Notes

Acknowledgments

The authors would like to thank UK Engineering and Physical Sciences Research Council (EPSRC) grant no. EP/I028765/1 and grant no. EP/NO3211X/1, the Guy’s and St Thomas’ Charity grant on developing clinician-scientific interfaces in robotic assisted surgery: translating technical innovation into improved clinical care (grant no. R090705), Higher Education Innovation Fund (HEIF), and Vattikuti foundation.

References

  1. 1.
    Hale, K.S., Stanney, K.M.: Deriving haptic design guidelines from human physiological, psychophysical, and neurological foundations. IEEE Comput. Graph. Appl. 24(2), 33–39 (2004)CrossRefGoogle Scholar
  2. 2.
    Gilson, R.D., Redden, E.S., Elliott, L.R.: Remote tactile displays for future soldiers, technical report, DTIC Document (2007)Google Scholar
  3. 3.
    Jones, L.A., Lederman, S.J.: Human hand function. Oxford University Press (2006)Google Scholar
  4. 4.
    Gilson, R.D., Redden, E.S., Elliott, L.R.: Remote tactile displays for future soldiers, University of Central Florida, Orlando (2007)Google Scholar
  5. 5.
    Tsukada, K., Yasumura, M.: ActiveBelt: belt-type wearable tactile display for directional navigation. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 384–399. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30119-6_23 CrossRefGoogle Scholar
  6. 6.
    Bliss, J.C., Katcher, M.H., Rogers, C.H., Shepard, R.P.: Optical-to-tactile image conversion for the blind. IEEE Trans. Man Mach. Syst. 11(1), 58–65 (1970)CrossRefGoogle Scholar
  7. 7.
    Wall III, C., Weinberg, M.S., Schmidt, P.B., Krebs, D.E.: Balance prosthesis based on micromechanical sensors using vibrotactile feedback of tilt. IEEE Trans. Biomed. Eng. 48(10), 1153–1161 (2001)CrossRefGoogle Scholar
  8. 8.
    Priplata, A.A., Niemi, J.B., Harry, J.D., Lipsitz, L.A., Collins, J.J.: Vibrating insoles and balance control in elderly people. Lancet 362(9390), 1123–1124 (2003)CrossRefGoogle Scholar
  9. 9.
    Rupert, A.H.: An instrumentation solution for reducing spatial disorientation mishaps. IEEE Eng. Med. Biol. Mag. 19(2), 71–80 (2000)CrossRefGoogle Scholar
  10. 10.
    Van Erp, J.B.: Guidelines for the use of vibro-tactile displays in human computer interaction. In: Proceedings of Eurohaptics, pp. 18–22. IEEE (2002)Google Scholar
  11. 11.
    Stepanenko, Y., Sankar, T.S.: Vibro-impact analysis of control systems with mechanical clearance and its application to robotic actuators. J. Dyn. Syst. Meas. Control 108(1), 9–16 (1986)CrossRefzbMATHGoogle Scholar
  12. 12.
    Benali-Khoudja, M., Hafez, M., Alexandre, J.M., Khedda, A., Moreau, V.: VITAL: a new low-cost vibro-tactile display system. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 721–726 (2004)Google Scholar
  13. 13.
    Zaitsev, V., Sas, P.: Nonlinear response of a weakly damaged metal sample: a dissipative modulation mechanism of vibro-acoustic interaction. J. Vibr. Control 6(6), 803–822 (2000)CrossRefGoogle Scholar
  14. 14.
    Thoroughman, K.A., Shadmehr, R.: Learning of action through adaptive combination of motor primitives. Nature 407(6805), 742–747 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Anuradha Ranasinghe
    • 1
    Email author
  • Kaspar Althoefer
    • 2
  • Prokar Dasgupta
    • 3
  • Atulya Nagar
    • 1
  • Thrishantha Nanayakkara
    • 4
  1. 1.Liverpool Hope UniversityLiverpoolUK
  2. 2.Queen Mary, University of LondonLondonUK
  3. 3.MRC Centre for Transplantation, DTIMB & NIHR BRCLondonUK
  4. 4.Kings College LondonLondonUK

Personalised recommendations