Skip to main content

Characteristics of Skeletal Muscle as a Secretory Organ

  • Chapter
  • First Online:
The Plasticity of Skeletal Muscle

Abstract

Growing evidence has shown that skeletal muscle cells can secrete bioactive proteins into the extracellular milieu. Secretion of many of those proteins is accelerated in response to exercise and muscle contraction and can regulate functions of several organs via autocrine, paracrine, and endocrine routes; this is referred to as the myokine theory. Habitual exercise leads to various health benefits such as metabolic improvement, anti-inflammation, and muscle building, which are at least partly caused by myokines including specific interleukins. Comprehensive analysis suggests that skeletal muscle cells can secrete over 100 proteins, many of which remain unknown. However, recent studies have identified additional novel myokines. Some secreted proteins can improve nutrient metabolism and muscle/bone mass; others exert anti-inflammatory and anti-tumorigenesis effects. The concept of myokines could be expanded to not only include high molecule weight proteins but also small peptides and noncoding RNA and applied to various fields including nutrition and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baron AD, Brechtel G, Wallace P, Edelman SV (1998) Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am J Phys 255:E769–E774

    Google Scholar 

  2. Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, Febbraio M, Saltin B (2003) Searching for the exercise factor: is IL-6 a candidate. J Muscle Res Cell Motil 24:113–119

    Article  CAS  PubMed  Google Scholar 

  3. Burchfiel CM, Sharp DS, Curb JD, Rodriguez BL, Hwang LJ, Marcus EB, Yano K (1995) Physical activity and incidence of diabetes: the Honolulu Heart Program. Am J Epidemiol 141:360–368

    Article  CAS  PubMed  Google Scholar 

  4. Manson JE, Nathan DM, Krolewski AS, Stampfer MJ, Willett WC, Hennekens CH (1992) A prospective study of exercise and incidence of diabetes among US male physicians. JAMA 268:63–67

    Article  CAS  PubMed  Google Scholar 

  5. Lynch J, Helmrich SP, Lakka TA, Kaplan GA, Cohen RD, Salonen R, Salonen JT (1996) Moderately intense physical activities and high levels of cardiorespiratory fitness reduce the risk of non-insulin-dependent diabetes mellitus in middle-aged men. Arch Intern Med 156:1307–1314

    Article  CAS  PubMed  Google Scholar 

  6. Gebel K, Ding D, Chey T, Stamatakis E, Brown WJ, Bauman AE (2015) Effect of moderate to vigorous physical activity on all-cause mortality in middle-aged and older Australians. JAMA Intern Med 175:970–977

    Article  PubMed  Google Scholar 

  7. Lee KJ, Inoue M, Otani T, Iwasaki M, Sasazuki S, Tsugane S, JPHC Study Group (2007) Physical activity and risk of colorectal cancer in Japanese men and women: the Japan Public Health Center-based prospective study. Cancer Causes Control 18:199–209

    Article  Google Scholar 

  8. Pedersen BK, Fischer CP (2007) Beneficial health effects of exercise--the role of IL-6 as a myokine. Trends Pharmacol Sci 28:152–156

    Article  CAS  PubMed  Google Scholar 

  9. Gusba JE, Wilson RJ, Robinson DL, Graham TE (2008) Interleukin-6 and its mRNA responses in exercise and recovery: relationship to muscle glycogen. Scand J Med Sci Sports 18:77–85

    Article  CAS  PubMed  Google Scholar 

  10. Fischer CP (2006) Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev 12:6–33

    PubMed  Google Scholar 

  11. Glund S, Deshmukh A, Long YC, Moller T, Koistinen HA, Caidahl K, Zierath JR, Krook A (2007) Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle. Diabetes 56:1630–1637

    Article  CAS  PubMed  Google Scholar 

  12. Benrick A, Wallenius V, Asterholm IW (2012) Interleukin-6 mediates exercise-induced increase in insulin sensitivity in mice. Exp Physiol 97:1224–1235

    Article  CAS  PubMed  Google Scholar 

  13. van Hall G, Steensberg A, Sacchetti M, Fischer C, Keller C, Schjerling P, Hiscock N, MøllerK, Saltin B, Febbraio MA, Pedersen BK (2003) Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab 88:3005–3010

    Google Scholar 

  14. Petersen EW, Carey AL, Sacchetti M, Steinberg GR, Macaulay SL, Febbraio MA, Pedersen BK (2005) Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro: evidence that IL-6 acts independently of lipolytic hormones. Am J Physiol Endocrinol Metab 288:E155–E162

    Article  CAS  PubMed  Google Scholar 

  15. Lyngso D, Simonsen L, Bulow J (2002) Metabolic effects of interleukin-6 in human splanchnic and adipose tissue. J Physiol 543:379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lienenlüke B, Christ B (2007) Impact of interleukin-6 on the glucose metabolic capacity in rat liver. Histochem Cell Biol 128:371–377

    Article  PubMed  CAS  Google Scholar 

  17. Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT, Eppler E, Bouzakri K, Wueest S, Muller YD, Hansen AM, Reinecke M, Konrad D, Gassmann M, Reimann F, Halban PA, Gromada J, Drucker DJ, Gribble FM, Ehses JA, Donath MY (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17:1481–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Matthews VB, Aström MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, AkerströmT, Yfanti C, Broholm C, Mortensen OH, Penkowa M, Hojman P, Zankari A, Watt MJ, Bruunsgaard H, Pedersen BK, Febbraio MA (2009) Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52:1409–1418

    Google Scholar 

  19. Mashili FL, Austin RL, Deshmukh AS, Fritz T, Caidahl K, Bergdahl K, Zierath JR, ChibalinAV, Moller DE, Kharitonenkov A, Krook A (2011) Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity. Diabetes Metab Res Rev 27:286–297

    Google Scholar 

  20. Tamura Y, Watanabe K, Kantani T, Hayashi J, Ishida N, Kaneki M (2011) Upregulation of circulating IL-15 by treadmill running in healthy individuals: Is IL-15 an endocrine mediator of the beneficial effects of endurance exercise? Endocr J 58:211–215

    Article  CAS  PubMed  Google Scholar 

  21. Busquets S, Figueras M, Almendro V, López-Soriano FJ, Argilés JM (2006) Interleukin-15 increases glucose uptake in skeletal muscle. An antidiabetogenic effect of the cytokine. Biochim Biophys Acta 1760:1613–1617

    Article  CAS  PubMed  Google Scholar 

  22. Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, SanduskyGE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115:1627–1635

    Google Scholar 

  23. Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard RD, Burgess SC, Hammer RE, MangelsdorfDJ, Kliewer SA (2007) Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 5:415–425

    Google Scholar 

  24. Lee MS, Choi SE, Ha ES, An SY, Kim TH, Han SJ, Kim HJ, Kim DJ, Kang Y, Lee KW (2012) Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-κB. Metabolism 61:1142–1451

    Article  CAS  PubMed  Google Scholar 

  25. Nielsen AR, Mounier R, Plomgaard P, Mortensen OH, Penkowa M, Speerschneider T, Pilegaard H, Pedersen BK (2007) Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition. J Physiol 584:305–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Quinn LS, Anderson BG, Strait-Bodey L, Stroud AM, Argilés JM (2009) Oversecretion of interleukin-15 from skeletal muscle reduces adiposity. Am J Physiol Endocrinol Metab 296:E191–E202

    Article  CAS  PubMed  Google Scholar 

  27. Quinn LS, Anderson BG, Conner JD, Wolden-Hanson T (2013) IL-15 overexpression promotes endurance, oxidative energy metabolism, and muscle PPARδ, SIRT1, PGC-1α, and PGC-1β expression in male mice. Endocrinology 154:232–245

    Article  CAS  PubMed  Google Scholar 

  28. Akerstrom T, Steensberg A, Keller P, Keller C, Penkowa M, Pedersen BK (2005) Exercise induces interleukin-8 expression in human skeletal muscle. J Physiol 563:507–516

    Article  CAS  PubMed  Google Scholar 

  29. Pedersen L, Olsen CH, Pedersen BK, Hojman P (2012) Muscle-derived expression of the chemokine CXCL1 attenuates diet-induced obesity and improves fatty acid oxidation in the muscle. Am J Physiol Endocrinol Metab 302:E831–E840

    Article  CAS  PubMed  Google Scholar 

  30. Seldin MM, Peterson JM, Byerly MS, Wei Z, Wong GW (2012) Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J Biol Chem 287:11968–11980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, Kelly DP, Holloszy JO (2002) Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 16:1879–1886

    Article  CAS  PubMed  Google Scholar 

  33. Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C, Meier CA, BellDR, Kralli A, Giacobino JP, Dériaz O (2003) Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 52:2874–2881

    Google Scholar 

  34. Roberts LD, Boström P, O’Sullivan JF, Schinzel RT, Lewis GD, Dejam A, Lee YK, Palma MJ, Calhoun S, Georgiadi A, Chen MH, Ramachandran VS, Larson MG, Bouchard C, Rankinen T, Souza AL, Clish CB, Wang TJ, Estall JL, Soukas AA, Cowan CA, SpiegelmanBM, Gerszten RE (2014) β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab 19:96–108

    Google Scholar 

  35. Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I, Jedrychowski MP, Ruas JL, Wrann CD, Lo JC, Camera DM, Lachey J, Gygi S, Seehra J, Hawley JA, Spiegelman BM (2014) Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157:1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, Greene NP, Wu J, Estall JL, Irving BA, Lanza IR, Rasbach KA, Okutsu M, Nair KS, Yan Z, Leinwand LA, Spiegelman BM (2012) A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151:1319–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Adams GR (2002) Autocrine/paracrine IGF-I and skeletal muscle adaptation. J Appl Physiol 93:1159–1167

    Article  CAS  PubMed  Google Scholar 

  38. Tahimic CG, Wang Y, Bikle DD (2013) Anabolic effects of IGF-1 signaling on the skeleton. Front Endocrinol (Lausanne) 4:6

    Google Scholar 

  39. Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ (1995) Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofibers hypertrophy in transgenic mice. J Biol Chem 270:12109–12116

    Article  CAS  PubMed  Google Scholar 

  40. Musaró A, McCullagh K, Paul A, Houghton L, Dobtowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27:195–200

    Article  PubMed  Google Scholar 

  41. Barton ER, Morris L, Musaró A, Rosenthal N, Sweeney HL (2002) Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol 157:137–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019

    Article  CAS  PubMed  Google Scholar 

  43. Barton-Davis ER, Shoturma DI, Musaro A, Rosenthal N, Sweeney HL (1998) Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci U S A 95:15603–15607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li M, Li C, Parkhouse WS (2003) Age-related differences in the des IGF-I-mediated activation of Akt-1 and p 70 S6 K in mouse skeletal muscle. Mech Ageing Dev 124:771–778

    Article  CAS  PubMed  Google Scholar 

  45. Broholm C, Pedersen BK (2010) Leukaemia inhibitory factor – an exercise-induced myokine. Exerc Immunol Rev 16:77–85

    PubMed  Google Scholar 

  46. Spangenburg EE, Booth FW (2002) Multiple signaling pathways mediate LIF-induced skeletal muscle satellite cell proliferation. Am J Phys Cell Phys 283:C204–C211

    Article  CAS  Google Scholar 

  47. Matsakas A, Diel P (2005) The growth factor myostatin, a key regulator in skeletal muscle growth and homeostasis. Int J Sports Med 26:83–89

    Article  CAS  PubMed  Google Scholar 

  48. Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A 98:9306–9311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Allen DL, Unterman TG (2007) Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors. Am J Phys Cell Phys 292:C188–C199

    Article  CAS  Google Scholar 

  50. Hill JJ, Davies MV, Pearson AA, Wang JH, Hewick RM, Wolfman NM, Qiu Y (2002) The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J Biol Chem 277:40735–40741

    Article  CAS  PubMed  Google Scholar 

  51. Görgens SW, Raschke S, Holven KB, Jensen J, Eckardt K, Eckel J (2013) Regulation of follistatin-like protein 1 expression and secretion in primary human skeletal muscle cells. Arch Physiol Biochem 119:75–80

    Article  PubMed  CAS  Google Scholar 

  52. Kanzleiter T, Rath M, Görgens SW, Jensen J, Tangen DS, Kolnes AJ, Kolnes KJ, Lee S, EckelJ, Schürmann A, Eckardt K (2014) The myokine decorin is regulated by contraction and involved in muscle hypertrophy. Biochem Biophys Res Commun 450:1089–1094

    Google Scholar 

  53. Görgens SW, Hjorth M, Eckardt K, Wichert S, Norheim F, Holen T, Lee S, Langleite T, Birkeland KI, Stadheim HK, Kolnes KJ, Tangen DS, Kolnes AJ, Jensen J, Drevon CA, Eckel J (2016) The exercise-regulated myokine chitinase-3-like protein 1 stimulates human myocyte proliferation. Acta Physiol (Oxford) 216:330–345

    Article  CAS  Google Scholar 

  54. Haugen F, Norheim F, Lian H, Wensaas AJ, Dueland S, Berg O, Funderud A, Skålhegg BS, Raastad T, Drevon CA (2010) IL-7 is expressed and secreted by human skeletal muscle cells. Am J Phys Cell Phys 298:C807–C816

    Article  CAS  Google Scholar 

  55. Zhang C, Li Y, Wu Y, Wang L, Wang X, Du J (2013) Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration. J Biol Chem 288:1489–1499

    Article  CAS  PubMed  Google Scholar 

  56. Hamrick MW, McNeil PL, Patterson SL (2010) Role of muscle-derived growth factors in bone formation. J Musculoskelet Neuronal Interact 10:64–70

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jähn K, Lara-Castillo N, Brotto L, Mo CL, Johnson ML, Brotto M, Bonewald LF (2012) Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of beta-catenin. Eur Cell Mater 24:197–209

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yu Y, Mu J, Fan Z, Lei G, Yan M, Wang S, Tang C, Wang Z, Yu J, Zhang G (2012) Insulin-like growth factor 1 enhances the proliferation and osteogenic differentiation of human periodontal ligament stem cells via ERK and JNK MAPK pathways. Histochem Cell Biol 137:513–525

    Article  CAS  PubMed  Google Scholar 

  59. Hamrick MW (2012) The skeletal muscle secretome: an emerging player in muscle-bone crosstalk. Bonekey Rep 1:60

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bakker AD, Kulkarni RN, Klein-Nulend J, Lems WF (2014) IL-6 alters osteocyte signaling toward osteoblasts but not osteoclasts. J Dent Res 93:394–399

    Article  CAS  PubMed  Google Scholar 

  61. Colaianni G, Cuscito C, Mongelli T, Pignataro P, Buccoliero C, Liu P, Lu P, Sartini L, Di Comite M, Mori G, Di Benedetto A, Brunetti G, Yuen T, Sun L, Reseland JE, Colucci S, NewMI, Zaidi M, Cinti S, Grano M (2015) The myokine irisin increases cortical bone mass. Proc Natl Acad Sci U S A 112:12157–12162

    Google Scholar 

  62. Kaji H (2014) Interaction between Muscle and Bone. J Bone Metab 21:29–40

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yong Qiao X, Nie Y, Xian Ma Y, Chen Y, Cheng R, Yao Yinrg W, Hu Y, Ming Xu W, ZhiXL (2016) Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Sci Report 6:18732

    Google Scholar 

  64. Forrester SJ, Kawata K, Lee H, Kim JS, Sebzda K, Butler T, Yingling VR, Park JY (2014) Bioinformatic identification of connective tissue growth factor as an osteogenic protein within skeletal muscle. Phys Rep 2:12

    Google Scholar 

  65. Covington JD, Tam CS, Bajpeyi S, Galgani JE, Noland RC, Smith SR, Redman LM, Ravussin E (2016) Myokine expression in muscle and myotubes in response to exercise stimulation. Med Sci Sports Exerc 48:384–390

    Article  CAS  PubMed  Google Scholar 

  66. Heinrich PC, Castell JV, Andus T (1990) Interleukin-6 and the acute phase response. Biochem J 265:621–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Steensberg A, Fischer CP, Keller C, Moller K, Pedersen BK (2003) IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab 285:E433–E437

    Article  CAS  PubMed  Google Scholar 

  68. Starkie R, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK (2003) Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J 17:884–886

    CAS  PubMed  Google Scholar 

  69. Kadoglou NP, Perrea D, Iliadis F, Angelopoulou N, Liapis C, Alevizos M (2007) Exercise reduces resistin and inflammatory cytokines in patients with type 2 diabetes. Diabetes Care 30:719–721

    Article  CAS  PubMed  Google Scholar 

  70. Nicklas BJ, Hsu FC, Brinkley TJ, Church T, Goodpaster BH, Kritchevsky SB, Pahor M (2008) Exercise training and plasma C-reactive protein and interleukin-6 in elderly people. J Am Geriatr Soc 56:2045–2052

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ouchi N, Oshima Y, Ohashi K, Higuchi A, Ikegami C, Izumiya Y, Walsh K (2008) Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem 283:32802–32811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Garabrant DH, Peters JM, Mack TM, Bernstein L (1984) Job activity and colon cancer risk. Am J Epidemiol 119:1005–1014

    Article  CAS  PubMed  Google Scholar 

  73. Zheng W, Shu XO, McLaughlin JK, Chow WH, Gao YT, Blot WJ (1993) Occupational physical activity and the incidence of cancer of the breast, corpus uteri, and ovary in Shanghai. Cancer 71:3620–3624

    Article  CAS  PubMed  Google Scholar 

  74. Michaud DS, Giovannucci E, Willett WC, Colditz GA, Stampfer MJ, Fuchs CS (2001) Physical activity, obesity, height, and the risk of pancreatic cancer. J Am Med Assoc 286:921–929

    Article  CAS  Google Scholar 

  75. Wannamethee SG, Shaper AG, Walker M (2001) Physical activity and risk of cancer in middle-aged men. Br J Cancer 85:1311–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. World Cancer Research Fund, and American Institute for Cancer Research (2007) Physical activity. In: World Cancer Research Fund, American Institute for Cancer Research (ed) Food, nutrition, physical activity, and the prevention of cancer: a global perspective. WCRF/AICR, Washington, DC, pp 198–209

    Google Scholar 

  77. Hagio M, Matsumoto M, Yajima T, Hara H, Ishizuka S (2010) Voluntary wheel running exercise and dietary lactose concomitantly reduce proportion of secondary bile acids in rat feces. J Appl Physiol 109:663–668

    Article  CAS  PubMed  Google Scholar 

  78. Shephard RJ, Rhind S, Shek PN (1995) The impact of exercise on the immune system: NK cells, interleukins 1 and 2, and related responses. Exerc Sport Sci Rev 23:215–241

    Article  CAS  PubMed  Google Scholar 

  79. McTiernan A, Ulrich C, Slate S, Potter J (1998) Physical activity and cancer etiology: associations and mechanisms. Cancer Causes Control 9:487–509

    Article  CAS  PubMed  Google Scholar 

  80. Song BK, Cho KO, Jo Y, Oh JW, Kim YS (2012) Colon transit time according to physical activity level in adults. J Neurogastroenterol Motil 18:64–69

    Article  PubMed  PubMed Central  Google Scholar 

  81. Demarzo MM, Martins LV, Fernandes CR, Herrero FA, Perez SE, Turatti A, Garcia SB (2008) Exercise reduces inflammation and cell proliferation in rat colon carcinogenesis. Med Sci Sports Exerc 40:618–621

    Article  PubMed  Google Scholar 

  82. Aoi W, Naito Y, Takagi T, Kokura S, Mizushima K, Takanami Y, Kawai Y, Tanimura Y, Hung LP, Koyama R, Ichikawa H, YoshikawaT (2010) Regular exercise reduces colon tumorigenesis associated with suppression of iNOS. Biochem Biophys Res Commun 399:14–19

    Google Scholar 

  83. Aoi W, Naito Y, Takagi T, Tanimura Y, Takanami Y, Kawai Y, Sakuma K, Hang LP, Mizushima K, Hirai Y, Koyama R, Wada S, Higashi A, Kokura S, Ichikawa H, YoshikawaT (2013) A novel myokine, secreted protein acidic and rich in cysteine (SPARC), suppresses colon tumorigenesis via regular exercise. Gut 62:882–889

    Google Scholar 

  84. Brekken RA, Sage EH (2001) SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol 19:816–827

    Article  CAS  PubMed  Google Scholar 

  85. Bradshaw AD, Sage EH (2001) SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J Clin Invest 107:1049–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bornstein P (1995) Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1. J Cell Biol 130:503–506

    Article  CAS  PubMed  Google Scholar 

  87. Jendraschak E, Sage EH (1996) Regulation of angiogenesis by SPARC and angiostatin: implications for tumor cell biology. Semin Cancer Biol 7:139–146

    Article  CAS  PubMed  Google Scholar 

  88. Rentz TJ, Poobalarahi F, Bornstein P, Sage EH, Bradshaw AD (2007) SPARC regulates processing of procollagen I and collagen fibrillogenesis in dermal fibroblasts. J Biol Chem 282:22062–22071

    Article  CAS  PubMed  Google Scholar 

  89. Chlenski A, Guerrero LJ, Salwen HR, Yang Q, Tian Y, Morales La Madrid A, Mirzoeva S, Bouyer PG, Xu D, Walker M, Cohn SL (2011) Secreted protein acidic and rich in cysteine is a matrix scavenger chaperone. PLoS One 6:e23880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nakamura K, Nakano S, Miyoshi T, Yamanouchi K, Matsuwaki T, Nishihara M (2012) Age-related resistance of skeletal muscle-derived progenitor cells to SPARC may explain a shift from myogenesis to adipogenesis. Aging (Albany NY) 4:40–48

    Article  CAS  Google Scholar 

  91. Puolakkainen PA, Brekken RA, Muneer S, Sage EH (2004) Enhanced growth of pancreatic tumors in SPARC-null mice is associated with decreased deposition of extracellular matrix and reduced tumor cell apoptosis. Mol Cancer Res 2:215–224

    CAS  PubMed  Google Scholar 

  92. Said N, Motamed K (2005) Absence of host-secreted protein acidic and rich in cysteine (SPARC) augments peritoneal ovarian carcinomatosis. Am J Pathol 167:1739–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yiu GK, Chan WY, Ng SW, Chan PS, Cheung KK, Berkowitz RS, Mok SC (2001) SPARC (secreted protein acidic and rich in cysteine) induces apoptosis in ovarian cancer cells. Am J Pathol 159:609–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cheetham S, Tang MJ, Mesak F, Kennecke H, Owen D, Tai IT (2008) SPARC promoter hypermethylation in colorectal cancers can be reversed by 5-Aza-2_deoxycytidine to increase SPARC expression and improve therapy response. Br J Cancer 98:1810–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang E, Kang HJ, Koh KH, Rhee H, Kim NK, Kim H (2007) Frequent inactivation of SPARC by promoter hypermethylation in colon cancers. Int J Cancer 121:567–755

    Article  CAS  PubMed  Google Scholar 

  96. Tai IT, Tang MJ (2008) SPARC in cancer biology: its role in cancer progression and potential for therapy. Drug Resist Updat 11:231–246

    Article  CAS  PubMed  Google Scholar 

  97. Tai IT, Dai M, Owen DA, Chen LB (2005) Genome-wide expression analysis of therapy-resistant tumors reveals SPARC as a novel target for cancer therapy. J Clin Invest 115:1492–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Takahashi M, Mutoh M, Kawamori T, Sugimura T, Wakabayashi K (2000) Altered expression of β-catenin, inducible nitric oxide synthase and cyclooxygenase-2 in azoxymethane-induced rat colon carcinogenesis. Carcinogenesis 21:1319–1327

    CAS  PubMed  Google Scholar 

  99. Hojman P, Dethlefsen C, Brandt C, Hansen J, Pedersen L, Pedersen BK (2011) Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth. Am J Physiol Endocrinol Metab 301:E504–E510

    Article  CAS  PubMed  Google Scholar 

  100. Bortoluzzi S, Scannapieco P, Cestaro A, Danieli GA, Schiaffino S (2006) Computational reconstruction of the human skeletal muscle secretome. Proteins 62:776–792

    Article  CAS  PubMed  Google Scholar 

  101. Chan XC, McDermott JC, Siu KW (2007) Identification of secreted proteins during skeletal muscle development. J Proteome Res 6:698–710

    Article  CAS  PubMed  Google Scholar 

  102. Henningsen J, Rigbolt KT, Blagoev B, Pedersen BK, Kratchmarova I (2010) Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol Cell Proteomics 9:2482–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Choi S, Liu X, Li P, Akimoto T, Lee SY, Zhang M, Yan Z (2005) Transcriptional profiling in mouse skeletal muscle following a single bout of voluntary running: evidence of increased cell proliferation. J Appl Physiol 99:2406–2415

    Article  CAS  PubMed  Google Scholar 

  104. Mahoney DJ, Parise G, Melov S, Safdar A, Tarnopolsky MA (2005) Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J 19:1498–1500

    CAS  PubMed  Google Scholar 

  105. Guelfi KJ, Casey TM, Giles JJ, Fournier PA, Arthur PG (2006) A proteomic analysis of the acute effects of high-intensity exercise on skeletal muscle proteins in fasted rats. Clin Exp Pharmacol Physiol 33:952–957

    Article  CAS  PubMed  Google Scholar 

  106. Holloway KV, O’Gorman M, Woods P, Morton JP, Evans L, Cable NT, Goldspink DF, Burniston JG (2009) Proteomic investigation of changes in human vastus lateralis muscle in response to interval-exercise training. Proteomics 9:5155–5174

    Article  CAS  PubMed  Google Scholar 

  107. Hashimoto T, Hussien R, Oommen S, Gohil K, Brooks GA (2007) Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J 21:2602–2612

    Article  CAS  PubMed  Google Scholar 

  108. van Hall G, Strømstad M, Rasmussen P, Jans O, Zaar M, Gam C, Quistorff B, Secher NH, Nielsen HB (2009) Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab 29:1121–1129

    Article  PubMed  CAS  Google Scholar 

  109. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  110. Aoi W, Sakuma K (2014) Does regulation of skeletal muscle function involve circulating microRNAs? Front Physiol 5:39

    Article  PubMed  PubMed Central  Google Scholar 

  111. McCarthy JJ (2008) MicroRNA-206: the skeletal muscle-specific myomiR. Biochim Biophys Acta 1779:682–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. McCarthy JJ (2011) The MyomiR network in skeletal muscle plasticity. Exerc Sci Sport Rev 39:150–154

    Article  Google Scholar 

  113. Small EM, O’Rourke JR, Moresi V, Sutherland LB, McAnally J, Gerard RD, Richardson JA, Olson EN (2010) Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proc Natl Acad Sci U S A 107:4218–4223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Aoi W (2015) Frontier impact of microRNAs in skeletal muscle research: a future perspective. Front Physiol 5:495

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI: Grant-in-Aid for Scientific Research (B) Grant Number 25282199, Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Aoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Aoi, W. (2017). Characteristics of Skeletal Muscle as a Secretory Organ. In: Sakuma, K. (eds) The Plasticity of Skeletal Muscle. Springer, Singapore. https://doi.org/10.1007/978-981-10-3292-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3292-9_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3291-2

  • Online ISBN: 978-981-10-3292-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics