Skip to main content

The Role of Ribosome Biogenesis in Skeletal Muscle Hypertrophy

  • Chapter
  • First Online:
The Plasticity of Skeletal Muscle

Abstract

The regulation of muscle size is primarily determined by protein metabolism. During periods of rapid muscle wasting, protein degradation has a major role, whereas during muscle hypertrophy the main force driving the increase in myofiber size is muscle protein synthesis. Although the majority of studies to date have focused on the short-lived responses in protein synthesis following an acute bout of resistance exercise, accumulating evidences in recent years have convincingly demonstrated that ribosome biogenesis as a main source of translational capacity plays an important role in muscle growth. This chapter will focus on muscle ribosome biogenesis in relation to the biology of muscle growth and its important implications for clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arabi A, Wu S, Ridderstråle K, Bierhoff H, Shiue C, Fatyol K, Fahlén S, Hydbring P, Söderberg O, Grummt I, Larsson L-G, Wright APH (2005) c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol 7:303–310

    Article  CAS  PubMed  Google Scholar 

  2. Atherton PJ, Miller BF, Burd NA, Macnaughton LS, Murton AJ, Camera DM, Pancheva AV, Wang X, Vagula MC, Phillips BE, Brook MS, Wilkinson DJ, Smith K, Etheridge TE, Hamilton KL, Beals JW, van Vliet S, van Loon LJC, Wardle SL, Tipton KD, Stephens FB, Billeter R, Wall BT, Hawley JA, Panchev VS, Pancheva MV (2015) Commentaries on viewpoint: what is the relationship between acute measure of muscle protein synthesis and changes in muscle mass? J Appl Physiol 118:498–503

    Article  Google Scholar 

  3. Atherton PJ, Smith K (2012) Muscle protein synthesis in response to nutrition and exercise. J Physiol 590:1049–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Balagopal P, Schimke JC, Ades P, Adey D, Nair KS (2001) Age effect on transcript levels and synthesis rate of muscle MHC and response to resistance exercise. Am J Physiol Endocrinol Metab 280:E203–E208

    CAS  PubMed  Google Scholar 

  5. Blattner C, Jennebach S, Herzog F, Mayer A, Cheung ACM, Witte G, Lorenzen K, Hopfner K-P, Heck AJR, Aebersold R, Cramer P (2011) Molecular basis of Rrn3-regulated RNA polymerase I initiation and cell growth. Genes Dev 25:2093–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bodem J, Dobreva G, Hoffmann-Rohrer U, Iben S, Zentgraf H, Delius H, Vingron M, Grummt I (2000) TIF-IA, the factor mediating growth-dependent control of ribosomal RNA synthesis, is the mammalian homolog of yeast Rrn3p. EMBO Rep 1:171–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bodine SC (2013) Disuse-induced muscle wasting. Int J Biochem Cell Biol 45:2200–2208

    Article  CAS  PubMed  Google Scholar 

  8. Drygin D, Rice WG, Grummt I (2010) The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu Rev Pharmacol Toxicol 50:131–156

    Article  CAS  PubMed  Google Scholar 

  9. Figueiredo VC, Caldow MK, Massie V, Markworth JF, Cameron-Smith D, Blazevich AJ (2015) Ribosome biogenesis adaptation in resistance training-induced human skeletal muscle hypertrophy. Am J Physiol Endocrinol Metab 309:E72–E83

    Article  CAS  PubMed  Google Scholar 

  10. Figueiredo VC, Markworth JF, Durainayagam BR, Pileggi CA, Roy NC, Barnett MPG, Cameron-Smith D (2016) Impaired ribosome biogenesis and skeletal muscle growth in a murine model of inflammatory bowel disease. Inflamm Bowel Dis 22:268–278

    Article  PubMed  Google Scholar 

  11. Figueiredo VC, Roberts LA, Markworth JF, Barnett MPG, Coombes JS, Raastad T, Peake JM, Cameron-Smith D (2016) Impact of resistance exercise on ribosome biogenesis is acutely regulated by post-exercise recovery strategies. Physiol Rep 4:e12670

    Article  PubMed  PubMed Central  Google Scholar 

  12. Foss EJ, Radulovic D, Shaffer SA, Goodlett DR, Kruglyak L, Bedalov A (2011) Genetic variation shapes protein networks mainly through non-transcriptional mechanisms. PLoS Biol 9:e1001144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Friedrich JK, Panov KI, Cabart P, Russell J, Zomerdijk JCBM (2005) TBP-TAF complex SL1 directs RNA polymerase I pre-initiation complex formation and stabilizes upstream binding factor at the rDNA promoter. J Biol Chem 280:29551–29558

    Article  CAS  PubMed  Google Scholar 

  14. Ghazalpour A, Bennett B, Petyuk VA, Orozco L, Hagopian R, Mungrue IN, Farber CR, Sinsheimer J, Kang HM, Furlotte N, Park CC, Wen P-Z, Brewer H, Weitz K, Camp DG, Pan C, Yordanova R, Neuhaus I, Tilford C, Siemers N, Gargalovic P, Eskin E, Kirchgessner T, Smith DJ, Smith RD, Lusis AJ (2011) Comparative analysis of proteome and transcriptome variation in mouse. PLoS Genet 7:e1001393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goldberg A, Etlinger J, Goldspink D, Jablecki C (1974) Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports 7:185–198

    Google Scholar 

  16. Goldspink DF (1977) The influence of activity on muscle size and protein turnover. J Physiol 264:283–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goldspink DF (1977) The influence of immobilization and stretch on protein turnover of rat skeletal muscle. J Physiol 264:267–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gorski JJ, Pathak S, Panov K, Kasciukovic T, Panova T, Russell J, Zomerdijk JCBM (2007) A novel TBP-associated factor of SL1 functions in RNA polymerase I transcription. EMBO J 26:1560–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grummt I, Pikaard CS (2003) Epigenetic silencing of RNA polymerase I transcription. Nat Rev Mol Cell Biol 4:641–649

    Article  CAS  PubMed  Google Scholar 

  20. Henras AK, Plisson-Chastang C, O’Donohue M-F, Chakraborty A, Gleizes P-E (2015) An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip Rev RNA 6:225–242

    Article  CAS  PubMed  Google Scholar 

  21. Hoppe S, Bierhoff H, Cado I, Weber A, Tiebe M, Grummt I, Voit R (2009) AMP-activated protein kinase adapts rRNA synthesis to cellular energy supply. Proc Natl Acad Sci U S A 106:17781–17786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Horstman AMH, Olde Damink SW, Schols AMWJ, van Loon LJC (2016) Is cancer cachexia attributed to impairments in basal or postprandial muscle protein metabolism? Nutrients 8:499

    Article  PubMed Central  Google Scholar 

  23. Jastrzebski K, Hannan KM, Tchoubrieva EB, Hannan RD, Pearson RB (2007) Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors 25:209–226

    Article  CAS  PubMed  Google Scholar 

  24. Kelly F, Lewis S, Anderson P, Goldspink D (1984) Pre- and postnatal growth and protein turnover in four muscles of the rat. Muscle Nerve 3:235–242

    Article  Google Scholar 

  25. Khatter H, Myasnikov AG, Natchiar SK, Klaholz BP (2015) Structure of the human 80S ribosome. Nature 520:640–645

    Article  CAS  PubMed  Google Scholar 

  26. Kim PL, Staron RS, Phillips SM (2005) Fasted-state skeletal muscle protein synthesis after resistance exercise is altered with training. J Physiol 568:283–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kirby TJ, Lee JD, England JH, Chaillou T, Esser KA, JJ MC (2015) Blunted hypertrophic response in aged skeletal muscle is associated with decreased ribosome biogenesis. J Appl Physiol. doi:10.1152/japplphysiol.00296.2015

    PubMed Central  Google Scholar 

  28. Kirby TJ, Patel RM, McClintock TS, Dupont-Versteegden EE, Peterson CA, McCarthy JJ (2016) Myonuclear transcription is responsive to mechanical load and DNA content but uncoupled from cell size during hypertrophy. Mol Biol Cell 27:788–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krüger T, Zentgraf H, Scheer U (2007) Intranucleolar sites of ribosome biogenesis defined by the localization of early binding ribosomal proteins. J Cell Biol 177:573–578

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lawrence RJ, Pikaard CS (2004) Chromatin turn ons and turn offs of ribosomal RNA genes. Cell Cycle 3:880–883

    Article  CAS  PubMed  Google Scholar 

  31. Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10:307–318

    Article  PubMed  Google Scholar 

  32. Machida M, Takeda K, Yokono H, Ikemune S, Taniguchi Y, Kiyosawa H, Takemasa T (2012) Reduction of ribosome biogenesis with activation of the mTOR pathway in denervated atrophic muscle. J Cell Physiol 227:1569–1576

    Article  CAS  PubMed  Google Scholar 

  33. Marshall RA, Aitken CE, Dorywalska M, Puglisi JD (2008) Translation at the single-molecule level. Annu Rev Biochem 77:177–203

    Article  CAS  PubMed  Google Scholar 

  34. Mayer C, Grummt I (2006) Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25:6384–6391

    Article  CAS  PubMed  Google Scholar 

  35. Mayer C, Zhao J, Yuan X, Grummt I (2004) mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev 18:423–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mayhew DL, Kim J-S, Cross JM, Ferrando AA, Bamman MM (2009) Translational signaling responses preceding resistance training-mediated myofiber hypertrophy in young and old humans. J Appl Physiol 107:1655–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McCarthy JJ, Esser KA (2010) Anabolic and catabolic pathways regulating skeletal muscle mass. Curr Opin Clin Nutr Metab Care 13:230–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miller G, Panov KI, Friedrich JK, Trinkle-Mulcahy L, Lamond AI, Zomerdijk JC (2001) hRRN3 is essential in the SL1-mediated recruitment of RNA Polymerase I to rRNA gene promoters. EMBO J 20:1373–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mitchell CJ, Churchward-Venne TA, Parise G, Bellamy L, Baker SK, Smith K, Atherton PJ, Phillips SM (2014) Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men. PLoS One 9:e89431

    Article  PubMed  PubMed Central  Google Scholar 

  40. Morgan HE, Beinlich CJ (1997) Contributions of increased efficiency and capacity of protein synthesis to rapid cardiac growth. Mol Cell Biochem 176:145–151

    Article  CAS  PubMed  Google Scholar 

  41. Moss T, Langlois F, Gagnon-Kugler T, Stefanovsky V (2007) A housekeeper with power of attorney: the rRNA genes in ribosome biogenesis. Cell Mol Life Sci 64:29–49

    Article  CAS  PubMed  Google Scholar 

  42. Nader GA, von Walden F, Liu C, Lindvall J, Gutmann L, Pistilli EE, Gordon PM (2014) Resistance exercise training modulates acute gene expression during human skeletal muscle hypertrophy. J Appl Physiol 116:693–702

    Article  CAS  PubMed  Google Scholar 

  43. Nakada S, Ogasawara R, Kawada S, Maekawa T, Ishii N (2016) Correlation between ribosome biogenesis and the magnitude of hypertrophy in overloaded skeletal muscle. PLoS One 11:e0147284

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ogasawara R, Fujita S, Hornberger TA, Kitaoka Y, Makanae Y, Nakazato K, Naokata I (2016) The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci Rep 6:31142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Russell J, Zomerdijk JCBM (2006) The RNA polymerase I transcription machinery. Biochem Soc Symp 73:203–216

    Article  CAS  Google Scholar 

  46. Sandri M (2013) Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol 45:2121–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schalm SS, Blenis J (2002) Identification of a conserved motif required for mTOR signaling. Curr Biol 12:632–639

    Article  CAS  PubMed  Google Scholar 

  48. Schramm L, Hernandez N (2002) Recruitment of RNA polymerase III to its target promoters. Genes Dev 16:2593–2620

    Article  CAS  PubMed  Google Scholar 

  49. Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–342

    Article  PubMed  Google Scholar 

  50. Stec MJ, Kelly NA, Many GM, Windham ST, Tuggle SC, Bamman MM (2016) Ribosome biogenesis may augment resistance training-induced myofiber hypertrophy and is required for myotube growth in vitro. Am J Physiol Endocrinol Metab. doi:10.1152/ajpendo.00486.2015

    Google Scholar 

  51. Stec MJ, Mayhew DL, Bamman MM (2015) The effects of age and resistance loading on skeletal muscle ribosome biogenesis. J Appl Physiol 119:851–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stefanovsky VY, Langlois F, Bazett-Jones D, Pelletier G, Moss T (2006) ERK modulates DNA bending and enhancesome structure by phosphorylating HMG1-boxes 1 and 2 of the RNA polymerase I transcription factor UBF. Biochemistry 45:3626–3634

    Article  CAS  PubMed  Google Scholar 

  53. Stefanovsky VY, Pelletier G, Bazett-Jones DP, Crane-Robinson C, Moss T (2001) DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules. Nucleic Acids Res 29:3241–3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stefanovsky VY, Pelletier G, Hannan R, Gagnon-Kugler T, Rothblum LI, Moss T (2001) An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF. Mol Cell 8:1063–1073

    Article  CAS  PubMed  Google Scholar 

  55. Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM (2012) A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485:109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tsang CK, Liu H, Zheng XFS (2010) mTOR binds to the promoters of RNA polymerase I- and III-transcribed genes. Cell Cycle 9:953–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Voit R, Grummt I (2001) Phosphorylation of UBF at serine 388 is required for interaction with RNA polymerase I and activation of rDNA transcription. Proc Natl Acad Sci U S A 98:13631–13636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Voit R, Hoffmann M, Grummt I (1999) Phosphorylation by G1-specific cdk-cyclin complexes activates the nucleolar transcription factor UBF. EMBO J 18:1891–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. von Walden F, Casagrande V, Ostlund Farrants. A-K, Nader G a (2012) Mechanical loading induces the expression of a Pol I regulon at the onset of skeletal muscle hypertrophy. AJP Cell Physiol 302:C1523–C1530

    Article  Google Scholar 

  60. Wall BT, Dirks ML, Snijders T, van Dijk J-W, Fritsch M, Verdijk LB, van Loon LJC (2016) Short-term muscle disuse lowers myofibrillar protein synthesis rates and induces anabolic resistance to protein ingestion. Am J Physiol Endocrinol Metab 310:E137–E147

    PubMed  Google Scholar 

  61. Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24:437–440

    Article  CAS  PubMed  Google Scholar 

  62. Wen Y, Alimov AP, McCarthy JJ (2016) Ribosome biogenesis is necessary for skeletal muscle hypertrophy. Exerc Sport Sci Rev. doi:10.1249/JES.0000000000000082

    PubMed  Google Scholar 

  63. West DWD, Baehr LM, Marcotte GR, Chason CM, Tolento L, Gomes AV, Bodine SC, Baar K (2016) Acute resistance exercise activates rapamycin-sensitive and -insensitive mechanisms that control translational activity and capacity in skeletal muscle. J Physiol 594:453–468

    Article  CAS  PubMed  Google Scholar 

  64. Wilkinson SB, Phillips SM, Atherton PJ, Patel R, Yarasheski KE, Tarnopolsky MA, Rennie MJ (2008) Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol 586:3701–3717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Woolford JL, Baserga SJ (2013) Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195:643–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhao J, Yuan X, Frödin M, Grummt I (2003) ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth. Mol Cell 11:405–413

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. McCarthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Figueiredo, V.C., McCarthy, J.J. (2017). The Role of Ribosome Biogenesis in Skeletal Muscle Hypertrophy. In: Sakuma, K. (eds) The Plasticity of Skeletal Muscle. Springer, Singapore. https://doi.org/10.1007/978-981-10-3292-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3292-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3291-2

  • Online ISBN: 978-981-10-3292-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics