Advertisement

Cytokines in Skeletal Muscle Growth and Decay

Chapter
  • 992 Downloads

Abstract

By definition, cytokines are the first messengers of intercellular communications observed among leukocytes. Numerous cytokines control immune system and biological reactions thereof, but are functionally grouped into pro- and anti-inflammatory varieties (the latter are also involved in allergic reactions). The bulk of evidence points to substantial role played by cytokines in skeletal muscle growth and wasting. Cytokines and growth factors of immune origin affect skeletal muscle growth and organ formation, regeneration, and wasting but are also produced and secreted by muscle fibers as myokines. To orchestrate skeletal muscle growth, hepatocyte growth factor/scatter factor (HGF/SF) and insulin-like growth factors (IGF-I and IGF-II) play the primary physiological role being mediated through PI3-K/Akt signaling pathway. Skeletal muscle mass is in turn controlled negatively by myostatin, a member of transforming growth factor beta (TGF-β) superfamily. Following muscle injury, the immune-derived cytokines are most important in activation of muscle satellite cells: tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6); with IL-8 to arrange growth/regeneration; and IL-15 to control muscle hypertrophy. Some life-threatening diseases are associated with muscle wasting featured by accelerated muscle protein breakdown. In these catabolic states, cytokines such as TNF-α was often reported as causal factor. Moreover, cross talk between myokines (IL-6, IL-15) and adipokines (leptin) is vital for correct metabolic interorgan relations. Thus, cytokines and growth factors exist as basic chemical signals that orchestrate skeletal muscle fate in normal and diseased states.

Keywords

Cytokines Growth factors Skeletal muscle Growth Regeneration Cachexia 

Notes

Acknowledgements

Support for this work was provided by grant No UMO-2013/11/B/NZ5/03106 from the National Science Centre in Poland.

References

  1. 1.
    Acharyya S, Ladner KJ, Nelsen LL, Damrauer J, Reiser PJ, Swoap S, Guttridge DC (2004) Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. J Clin Invest 114:370–378PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Alexander WS (2002) Suppressors of cytokine signalling (SOCS) in the immune system. Nat Rev Immunol 2:410–416PubMedGoogle Scholar
  3. 3.
    Allen RE, Boxhorn LK (1987) Inhibition of skeletal muscle satellite cell differentiation by transforming growth factor-beta. J Cell Physiol 133:567–572PubMedCrossRefGoogle Scholar
  4. 4.
    Allen RE, Boxhorn LK (1989) Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J Cell Physiol 138:311–315PubMedCrossRefGoogle Scholar
  5. 5.
    Allen DL, Cleary AS, Hanson AM, Lindsay SF, Reed JM (2010) CCAAT/enhancer binding protein-delta expression is increased in fast skeletal muscle by food deprivation and regulates myostatin transcription in vitro. Am J Phys Regul Integr Comp Phys 299:R1592–R1601. doi: 10.1152/ajpregu.00247.2010 Google Scholar
  6. 6.
    Allen DL, Cleary AS, Speaker KJ, Lindsay SF, Uyenishi J, Reed JM, Madden MC, Mehan RS (2008) Myostatin, activin receptor IIb, and follistatin-like-3 gene expression are altered in adipose tissue and skeletal muscle of obese mice. Am J Physiol Endocrinol Metab 294:E918–E927. doi: 10.1152/ajpendo.00798.2007 PubMedCrossRefGoogle Scholar
  7. 7.
    Allen DL, Hittel DS, McPherron AC (2011) Expression and function of myostatin in obesity, diabetes, and exercise adaptation. Med Sci Sports Exerc 43:1828–1835. doi: 10.1249/MSS.0b013e3182178bb4 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Allen DL, Loh AS (2011) Posttranscriptional mechanisms involving microRNA-27a and b contribute to fast-specific and glucocorticoid-mediated myostatin expression in skeletal muscle. Am J Phys Cell Phys 300:C124–C137. doi: 10.1152/ajpcell.00142.2010 CrossRefGoogle Scholar
  9. 9.
    Allen DL, Unterman TG (2007) Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors. Am J Phys Cell Phys 292:C188–C199. doi: 10.1152/ajpcell.00542.2005 CrossRefGoogle Scholar
  10. 10.
    Alvarez B, Quinn LS, Busquets S, Lopez-Soriano FJ, Argiles JM (2002) TNF-alpha modulates cytokine and cytokine receptors in C2C12 myotubes. Cancer Lett 175:181–185PubMedCrossRefGoogle Scholar
  11. 11.
    Anagnostis P, Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP (2009) Clinical review: the pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab 94:2692–2701. doi: 10.1210/jc.2009-0370 PubMedCrossRefGoogle Scholar
  12. 12.
    Anderson JE, Mitchell CM, McGeachie JK, Grounds MD (1995) The time course of basic fibroblast growth factor expression in crush-injured skeletal muscles of SJL/J and BALB/c mice. Exp Cell Res 216:325–334PubMedCrossRefGoogle Scholar
  13. 13.
    Anderson JE (2000) A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 11:1859–1874PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Argiles JM, Lopez-Soriano J, Almendro V, Busquets S, Lopez-Soriano FJ (2005) Cross-talk between skeletal muscle and adipose tissue: a link with obesity? Med Res Rev 25:49–65PubMedCrossRefGoogle Scholar
  15. 15.
    Armstrong RB, Warren GL, Warren JA (1991) Mechanisms of exercise-induced muscle fibre injury. Sports Med 12:184–207PubMedCrossRefGoogle Scholar
  16. 16.
    Asakura A, Rudnicki MA (2002) Cellular and molecular mechanisms regulating skeletal muscle development. In: Mouse development. Academic, Orlando, FL, pp 253–278CrossRefGoogle Scholar
  17. 17.
    Baggiolini M (2001) Chemokines in pathology and medicine. J Intern Med 250:91–104PubMedCrossRefGoogle Scholar
  18. 18.
    Bark TH, McNurlan MA, Lang CH, Garlick PJ (1998) Increased protein synthesis after acute IGF-I or insulin infusion is localized to muscle in mice. Am J Physiol Endocrinol Metab 275:E118–E123Google Scholar
  19. 19.
    Barton-Davis ER, Shoturma DI, Sweeney HL (1999) Contribution of satellite cells to IGF-I induced hypertrophy of skeletal muscle. Acta Physiol Scand 167:301–305PubMedCrossRefGoogle Scholar
  20. 20.
    Bek EL, McMillen MA, Scott P, Angus LD, Shaftan GW (2002) The effect of diabetes on endothelin, interleukin-8 and vascular endothelial growth factor-mediated angiogenesis in rats. Clin Sci 103(Suppl 48):424S–429SPubMedCrossRefGoogle Scholar
  21. 21.
    Ben-Levy R, Hooper S, Wilson R, Paterson HF, Marshall CJ (1998) Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2. Curr Biol 8:1049–1057PubMedCrossRefGoogle Scholar
  22. 22.
    Bjorbaek C, Buchholz RM, Davis SM, Bates SH, Pierroz DD, Gu H, Neel BG, Myers MG Jr, Flier JS (2001) Divergent roles of SHP-2 in ERK activation by leptin receptors. J Biol Chem 276:4747–4755PubMedCrossRefGoogle Scholar
  23. 23.
    Blachowski S, Motyl T, Orzechowski A, Grzelkowska K, Interewicz B (1993) Comparison of metabolic effects of EGF, TGF-a, and TGF-b1 in primary culture of fetal bovine myoblasts and rat L6 myoblasts. Int J Biochem 25:1571–1577PubMedCrossRefGoogle Scholar
  24. 24.
    Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708PubMedCrossRefGoogle Scholar
  25. 25.
    Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-γ. Annu Rev Immunol 15:749–795PubMedCrossRefGoogle Scholar
  26. 26.
    Bouzakri K, Zierath JR (2007) MAP4K4 gene silencing in human skeletal muscle prevents tumor necrosis factor-alpha-induced insulin resistance. J Biol Chem 282:7783–7789PubMedCrossRefGoogle Scholar
  27. 27.
    Brickson S, Ji LL, Olabisi R, Schneider BSP, Best TM (2003) M1/70 attenuates blood-borne neutrophil oxidants, activation, and myofiber damage following stretch injury. J Appl Physiol 95:969–976PubMedCrossRefGoogle Scholar
  28. 28.
    Bruunsgaard H, Pedersen BK (2003) Age-related inflammatory cytokines and disease. Immunol Allergy Clin N Am 23:15–39CrossRefGoogle Scholar
  29. 29.
    Cantini M, Carraro U (1995) Macrophage-released factor stimulates selectively myogenic cells in primary muscle culture. J Neuropathol Exp Neurol 54:121–128PubMedCrossRefGoogle Scholar
  30. 30.
    Carbo N, Lopez-Soriano J, Costelli P, Alvarez B, Busquets S, Baccino FM, Quinn LS, Lopez-Soriano FJ, Argiles JM (2001) Interleukin-15 mediates reciprocal regulation of adipose and muscle mass: a potential role in body weight control. Biochim Biophys Acta 1526:17–24PubMedCrossRefGoogle Scholar
  31. 31.
    Carnwath JW, Shotton DM (1987) Muscular dystrophy in the mdx mouse: histopathology of the soleus and extensor digitorum longus muscles. J Neurol Sci 80:39–54PubMedCrossRefGoogle Scholar
  32. 32.
    Cesari M, Penninx BW, Pahor M, Lauretani F, Corsi AM, Rhys WG, Guralnik JM, Ferrucci L (2004) Inflammatory markers and physical performance in older persons: the InCHIANTI study. J Gerontol A Biol Sci Med Sci 59:242–248PubMedCrossRefGoogle Scholar
  33. 33.
    Chan MH, McGee SL, Watt MJ, Hargreaves M, Febbraio MA (2004) Altering dietary nutrient intake that reduces glycogen content leads to phosphorylation of nuclear p38 MAP kinase in human skeletal muscle: association with IL-6 gene transcription during contraction. FASEB J 18:1785–1787PubMedGoogle Scholar
  34. 34.
    Charge´ SBP, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84: 209–238Google Scholar
  35. 35.
    Chen SE, Gerken E, Zhang Y, Zhan M, Mohan RK, Li AS, Reid MB, Li YP (2005) Role of TNF-α signaling in regeneration of cardiotoxin-injured muscle. Am J Phys Cell Phys 289:C1179–C1187CrossRefGoogle Scholar
  36. 36.
    Cheng M, Nguyen MH, Fantuzzi G, Koh TJ (2008) Endogenous interferon-γ is required for efficient skeletal muscle regeneration. Am J Phys 294:1183–1191CrossRefGoogle Scholar
  37. 37.
    Choy EH, Isenberg DA, Garrood T, Farrow S, Ioannou Y, Bird H, Cheung N, Williams B, Hazleman B, Price R, Yoshizaki K, Nishimoto N, Kishimoto T, Panayi GS (2002) Therapeutic benefit of blocking interleukin-6 activity with an anti-interleukin-6 receptor with an anti-interleukin-6 receptor monoclonal antibody in rheumatoid arthritis: a randomized, double-blind, placebo-controlled, dose-escalation trial. Arthritis Rheum 46:3143–3150PubMedCrossRefGoogle Scholar
  38. 38.
    Coleman ME, Demayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ (1995) Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem 270:12109–12116PubMedCrossRefGoogle Scholar
  39. 39.
    Cornelison DD, Filla MS, Stanley HM, Rapraeger AC, Olwin BB (2001) Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev Biol 239:79–94PubMedCrossRefGoogle Scholar
  40. 40.
    Costamagna D, Costelli P, Sampaolesi M, Penna F (2015)Role of inflammation in muscle homeostasis and myogenesis. Mediat Inflamm 2015 (Artcile ID 805172): 14,  http://dx.doi.org/10.1155/2015/805172
  41. 41.
    Craig R, Larkin A, Mingo AM, Thuerauf DJ, Andrews C, Mc-Donough PM, Glembotski CC (2000) p38 MAPK and NF-kappa B collaborate to induce interleukin-6 gene expression and release. Evidence for a cytoprotective autocrine signaling pathway in a cardiac myocyte model system. J Biol Chem 275:23814–23824PubMedCrossRefGoogle Scholar
  42. 42.
    D’Albis A, Couteaux R, Janmot C, Roulet A, Mira JC (1988) Regeneration after cardiotoxin injury of innervated and denervated slow and fast muscles of mammals. Myosin isoform analysis. Eur J Biochem 174:103–110PubMedCrossRefGoogle Scholar
  43. 43.
    Delapeyriere O, Ollendorff V, Planche J, Ott MO, Pizette S, Coulier F, Birnbaum D (1993) Expression of the Fgf6 gene is restricted to developing skeletal muscle in the mouse embryo. Development 118:601–611PubMedGoogle Scholar
  44. 44.
    Di FM, Barbier D, Mege JL, Orehek J (1994) Tumor necrosis factor-alpha levels and weight loss in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 150:1453–1455CrossRefGoogle Scholar
  45. 45.
    Dinarello CA (2000) The role of the interleukin-1-receptor antagonist in blocking inflammation mediated by interleukin-1. N Engl J Med 343:732–734PubMedCrossRefGoogle Scholar
  46. 46.
    Dumont NA, Wang YX, Rudnicki MA (2015) Intrinsic and extrinsic mechanisms regulating satellite function. Development 142:1572–1581PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Dusterhoft S, Pette D (1999) Evidence that acidic fibroblast growth factor promotes maturation of rat satellite-cell-derived myotubes in vitro. Differentiation 65:161–169PubMedCrossRefGoogle Scholar
  48. 48.
    Edwall D, Schalling M, Jennische E, Norstedt G (1989) Induction of insulin-like growth factor I messenger ribonucleic acid during regeneration of rat skeletal muscle. Endocrinology 124:820–825PubMedCrossRefGoogle Scholar
  49. 49.
    El Fahime E, Mills P, Lafreniere JF, Torrente Y, Tremblay JP (2002) The urokinase plasminogen activator: an interesting way to improve myoblast migration following their transplantation. Exp Cell Res 280:169–178PubMedCrossRefGoogle Scholar
  50. 50.
    Ernst M, Jenkins BJ (2004) Acquiring signalling specificity from the cytokine receptor gp130. Trends Genet 20:23–32PubMedCrossRefGoogle Scholar
  51. 51.
    Febbraio MA, Pedersen BK (2005) Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc Sport Sci Rev 33:114–119PubMedCrossRefGoogle Scholar
  52. 52.
    Febbraio MA, Pedersen BK (2002) Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J 16:1335–1347PubMedCrossRefGoogle Scholar
  53. 53.
    Ferrucci L, Penninx BW, Volpato S, Harris TB, Bandeen-Roche K, Balfour J, Leveille SG, Fried LP, Md JM (2002) Change in muscle strength explains accelerated decline of physical function in older women with high interleukin-6 serum levels. J Am Geriatr Soc 50:1947–1954PubMedCrossRefGoogle Scholar
  54. 54.
    Fiedler B, Wollert KC (2004) Interference of antihypertrophic molecules and signaling pathways with the Ca2+-calcineurin-NFAT cascade in cardiac myocytes. Cardiovasc Res 63:450–457PubMedCrossRefGoogle Scholar
  55. 55.
    Fiers W (1991) Tumor necrosis factor. Characterization at the molecular, cellular and in vivo level. FEBS Lett 285:199–212PubMedCrossRefGoogle Scholar
  56. 56.
    Fischer CP, Hiscock N, Basu S, Vessby B, Kallner A, Sjoberg LB, Febbraio MA, Pedersen BK (2004a) Supplementation with vitamins C and E inhibits the release of interleukin-6 from contracting human skeletal muscle. J Physiol 558:633–645PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Fischer CP, Plomgaard P, Hansen AK, Pilegaard H, Saltin B, Pedersen BK (2004b) Endurance training reduces the contraction-induced interleukin-6 mRNA expression in human skeletal muscle. Am J Physiol Endocrinol Metab 287:E1189–E1194PubMedCrossRefGoogle Scholar
  58. 58.
    Fischer CP (2006) Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc Immunol Rev 12:6–33PubMedGoogle Scholar
  59. 59.
    Florini JR, Ewton DZ, Coolican SA (1996) Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev 17:481–517PubMedGoogle Scholar
  60. 60.
    Floss T, Arnold HH, Braun T (1997) A role for FGF-6 in skeletal muscle regeneration. Genes Dev 11:2040–2051PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Foster W, Li Y, Usas A, Somogyi G, Huard J (2003) Gamma interferon as an antifibrosis agent in skeletal muscle. J Orthop Reprod 21:4–12Google Scholar
  62. 62.
    Frost RA, Nystrom GJ, Lang CH (2002) Lipopolysaccharide regulates proinflammatory cytokine expression in mouse myoblasts and skeletal muscle. Am J Phys Regul Integr Comp Phys 283:R698–R709Google Scholar
  63. 63.
    Furmanczyk PS, Quinn LS (2003) Interleukin-15 increases myosin accretion in human skeletal myogenic cultures. Cell Biol Int 27:845–851PubMedCrossRefGoogle Scholar
  64. 64.
    Gal-Levi R, Leshem Y, Aoki S, Nakamura T, Halevy O (1998) Hepatocyte growth factor plays a dual role in regulating skeletal muscle satellite cell proliferation and differentiation. Biochim Biophys Acta 1402:39–51PubMedCrossRefGoogle Scholar
  65. 65.
    Giri JG, Kumaki S, Ahdieh M, Friend DJ, Loomis A, Shanebeck K, DuBose R, Cosman D, Park LS, Anderson DM (1995) Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. EMBO J 14:3654–3663PubMedPubMedCentralGoogle Scholar
  66. 66.
    Gleeson M (2000) Interleukins and exercise. J Physiol 529:1PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Goldhammer E, Tanchilevitch A, Maor I, Beniamini Y, Rosenschein U, Sagiv M (2005) Exercise training modulates cytokines activity in coronary heart disease patients. Int J Cardiol 100:93–99PubMedCrossRefGoogle Scholar
  68. 68.
    Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 98:14440–14445PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35PubMedCrossRefGoogle Scholar
  70. 70.
    Greene EA, Allen RE (1991) Growth factor regulation of bovine satellite cell growth in vitro. J Anim Sci 69:146–152PubMedCrossRefGoogle Scholar
  71. 71.
    Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17:71–74PubMedCrossRefGoogle Scholar
  72. 72.
    Grzelkowska-Kowalczyk K, Wicik Z, Majewska A, Tokarska J, Grabiec K, Kozlowski M, Milewska M, Baszczyk M (2015) Transcriptional regulation of important cellular processes in skeletal myogenesis through interferon-γ. J Interf Cytokine Res 35:89–99CrossRefGoogle Scholar
  73. 73.
    Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr (1999) NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 19:5785–5799PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Han DS, Huang HP, Wang TG, Hung MY, Ke JY, Chang KT (2010) Transcription activation of myostatin by trichostatin A in differentiated C2C12 myocytes via ASK1-MKK3/4/6-JNK and p38 mitogen-activated protein kinase pathways. J Cell Biochem 111:564–573. doi: 10.1002/jcb.22740 PubMedCrossRefGoogle Scholar
  75. 75.
    Hall-Craggs EC (1974) Rapid degeneration and regeneration of a whole skeletal muscle following treatment with bupivacaine (Marcaine). Exp Neurol 43:349–358PubMedCrossRefGoogle Scholar
  76. 76.
    Harris JB, Johnson MA (1978) Further observations on the pathological responses of rat skeletal muscle to toxins isolated from the venom of the Australian tiger snake Notechis scutatus scutatus. Clin Exp Pharmacol Physiol 5:587–600PubMedCrossRefGoogle Scholar
  77. 77.
    Hiscock N, Chan MH, Bisucci T, Darby IA, Febbraio MA (2004) Skeletal myocytes are a source of interleukin-6 mRNA expression and protein release during contraction: evidence of fiber type specificity. FASEB J 18:992–994PubMedGoogle Scholar
  78. 78.
    Jonsdottir IH, Schjerling P, Ostrowski K, Asp S, Richter EA, Pedersen BK (2000) Muscle contractions induce interleukin-6 mRNA production in rat skeletal muscles. J Physiol 528:157–163PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Joulia-Ekaza D, Cabello G (2006) Myostatin regulation of muscle development: molecular basis, natural mutations, physiopathological aspects. Exp Cell Res 312:2401–2414. doi: 10.1016/j.yexcr.2006.04.012 PubMedCrossRefGoogle Scholar
  80. 80.
    Joulia D, Bernardi H, Garandel V, Rabenoelina F, Vernus B, Cabello G (2003) Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp Cell Res 286:263–275. doi: 10.1016/S0014- 4827(03)00074-0 PubMedCrossRefGoogle Scholar
  81. 81.
    Kambadur R, Sharma M, Smith TP, Bass JJ (1997) Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 7:910–916PubMedGoogle Scholar
  82. 82.
    Karim L, Coppieters W, Grobet L, Valentini A, Georges M (2000) Convenient genotyping of six myostatin mutations causing double-muscling in cattle using a multiplex oligonucleotide ligation assay. Anim Genet 31:396–399PubMedCrossRefGoogle Scholar
  83. 83.
    Kastner S, Elias MC, Rivera AJ, Yablonka-Reuveni Z (2000) Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J Histochem Cytochem 48:1079–1096PubMedCrossRefGoogle Scholar
  84. 84.
    Keller C, Hellsten Y, Steensberg A, Pedersen BK (2006) Differential regulation of IL-6 and TNF-alpha via calcineurin in human skeletal muscle cells. Cytokine 36:141–147PubMedCrossRefGoogle Scholar
  85. 85.
    Keller C, Steensberg A, Hansen AK, Fischer CP, Plomgaard P, Pedersen BK (2005) The effect of exercise, training, glycogen availability on IL-6 receptor expression in human skeletal muscle. J Appl Physiol 99:2075–2079PubMedCrossRefGoogle Scholar
  86. 86.
    Keller C, Steensberg A, Pilegaard H, Osada T, Saltin B, Pedersen BK, Neufer PD (2001) Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J 15:2748–2750PubMedGoogle Scholar
  87. 87.
    Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798–1801PubMedCrossRefGoogle Scholar
  88. 88.
    Kopp E, Ghosh S (1994) Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265:956–959PubMedCrossRefGoogle Scholar
  89. 89.
    Kubaszek A, Pihlajamaki J, Komarovski V, Lindi V, Lindstrom J, Eriksson J, Valle TT, Hamalainen H, Ilanne-Parikka P, Keinanen-Kiukaanniemi S, Tuomilehto J, Uusitupa M, Laakso M (2003) Promoter polymorphisms of the TNF-alpha (G-308A) and IL-6 (C-174G) genes predict the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish Diabetes Prevention Study. Diabetes 52:1872–1876PubMedCrossRefGoogle Scholar
  90. 90.
    Kwiecińska P, Roszkiewicz B, Łokociejewska M, Orzechowski A (2005) Elevated expression of NF-κB and Bcl-2 proteins in C2C12 myocytes during myogenesis is affected by PD98059, LY294002 and SB203580. Cell Biol Int 29:319–331PubMedCrossRefGoogle Scholar
  91. 91.
    Langen RC, Van der Velden JL, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM (2004) Tumor necrosis factor-α inhibits myogenic differentiation through MyoD protein destabilization. FASEB J 18:227–237PubMedCrossRefGoogle Scholar
  92. 92.
    Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277:49831–49840. doi: 10.1074/jbc.M2042 91200 PubMedCrossRefGoogle Scholar
  93. 93.
    Lau KS, Grange RW, Chang WJ, Kamm KE, Sarelius I, Stull JT (1998) Skeletal muscle contractions stimulate cGMP formation and attenuate vascular smooth muscle myosin phosphorylation via nitric oxide. FEBS Lett 431:71–74PubMedCrossRefGoogle Scholar
  94. 94.
    Lau KS, Grange RW, Isotani EIJI, Sarelius IH, Kamm KE, Huang PL, Stull JT (2000) nNOS and eNOS modulate cGMP formation and vascular response in contracting fast-twitch skeletal muscle. Physiol Genomics 2:21–27PubMedGoogle Scholar
  95. 95.
    Lawlor MA, Rotwein P (2000) Insulin-like growth factor-mediated muscle cell survival: central roles for Akt and cyclin-dependent kinase inhibitor p21. Mol Cell Biol 20:8983–8995PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Lawlor MA, Feng X, Everding DR, Sieger K, Stewart CE, Rotwein P (2000) Dual control of muscle cell survival by distinct growth factor-regulated signaling pathways. Mol Cell Biol 20:3256–3265PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A 98:9306–9311PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Lefaucheur J, Sebille A (1995a) Basic fibroblast growth factor promotes in vivo muscle regeneration in murine muscular dystrophy. Neurosci Lett 202:121–124PubMedCrossRefGoogle Scholar
  99. 99.
    Lefaucheur J, Sebille A (1995b) The cellular events of injured muscle regeneration depend on the nature of the injury. Neuromuscul Disord 5:501–509PubMedCrossRefGoogle Scholar
  100. 100.
    Lefaucheur JP, Gjata B, Lafont H, Sebille A (1996) Angiogenic and inflammatory responses following skeletal muscle injury are altered by immune neutralization of endogenous basic fibroblast growth factor, insulin-like growth factor-1 and transforming growth factor-beta 1. J Neuroimmunol 70:37–44PubMedCrossRefGoogle Scholar
  101. 101.
    Lescaudron L, Peltekian E, Fontaine-Perus J, Paulin D, Zampieri M, Garcia L, Parrish E (1999) Blood borne macrophages are essential for the triggering of muscle regeneration following muscle transplant. Neuromuscul Disord 9:72–80PubMedCrossRefGoogle Scholar
  102. 102.
    Levinovitz A, Jennische E, Oldfors A, Edwall D, Norstedt G (1992) Activation of insulin-like growth factor II expression during skeletal muscle regeneration in the rat: correlation with myotube formation. Mol Endocrinol 6:1227–1234PubMedGoogle Scholar
  103. 103.
    Li YP (2003) TNF-α is a mitogen in skeletal muscle. Am J Phys Cell Phys 285:C370–C376CrossRefGoogle Scholar
  104. 104.
    Litwiniuk A, Pijet B, Pijet-Kucicka M, Gajewska M, Pająk B, Orzechowski A (2016) FOXO1 and GSK-3β are main targets of insulin-mediated myogenesis in C2C12 muscle cells. PLoS One 11:e0146726. doi: 10.1371/journal.pone.0146726 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Liu D, Black BL, Derynck R (2001) TGF-beta inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev 15:2950–2966. doi: 10.1101/gad.925901 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Lolmede K, Campana L, Vezzoli M, Bosurgi L, Tonlorenzi R, Clementi E, Bianchi ME, Cossu G, Manfredi AA, Brunelli S, Rovere-Querini P (2009) Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. J Leukoc Biol 85:779–787PubMedCrossRefGoogle Scholar
  107. 107.
    MacIntyre DL, Sorichter S, Mair J, Berg A, McKenzie DC (2001) Markers of inflammation and myofibrillar proteins following eccentric exercise in humans. Eur J Appl Physiol 84:180–186PubMedCrossRefGoogle Scholar
  108. 108.
    Malm C, Nyberg P, Engstrom M, Sjodin B, Lenkei R, Ekblom B (2000) Immunological changes in human skeletal muscle and blood after eccentric exercise and multiple biopsies. J Physiol 529:243–262PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Massimino M, Rapizzi E, Cantini M, Libera L, Mazzoeni F, Arsian P, Carraro U (1997) ED2+ macrophages increase selectively myoblast proliferation in muscle cultures. Biochem Biophys Res Commun 235:754–759PubMedCrossRefGoogle Scholar
  110. 110.
    Matthys P, Mitera T, Heremans H, Van Damme J, Billiau A (1995) Anti-gamma interferon and anti-interleukin-6 antibodies affect staphylococcal enterotoxin B-induced weight loss, hypoglycemia, cytokine release in D-galactosamine-sensitized and unsensitized mice. Infect Immun 63:1158–1164PubMedPubMedCentralGoogle Scholar
  111. 111.
    McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162:1135–1147. doi: 10.1083/jcb.200207056 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    McFarland DC, Pesall JE, Gilkerson KK (1993) The influence of growth factors on turkey embryonic myoblasts and satellite cells in vitro. Gen Comp Endocrinol 89:415–424PubMedCrossRefGoogle Scholar
  113. 113.
    McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A 94:12457–12461PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90PubMedCrossRefGoogle Scholar
  115. 115.
    Mendias CL, Tatsumi R, Allen RE (2004) Role of cyclooxygenase-1 and -2 in satellite cell proliferation, differentiation, and fusion. Muscle Nerve 30:497–500PubMedCrossRefGoogle Scholar
  116. 116.
    Mendler L, Zador E, Ver Heyen M, Dux L, Wuytack F (2000) Myostatin levels in regenerating rat muscles and in myogenic cell cultures. J Muscle Res Cell Motil 21:551–563PubMedCrossRefGoogle Scholar
  117. 117.
    Mihara M, Hashizume M, Yoshida H, Suzuki M, Shiina M (2012) IL-6/IL6 receptor system and its role in physiological and pathological conditions. Clin Sci 122:143–159PubMedCrossRefGoogle Scholar
  118. 118.
    Miller KJ, Thaloor D, Matteson S, Pavlath GK (2000) Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am J Phys Cell Phys 278:C174–C181Google Scholar
  119. 119.
    Mizuhara H, O’Neill E, Seki N, Ogawa T, Kusunoki C, Otsuka K, Satoh S, Niwa M, Senoh H, Fujiwara H (1994) T cell activation associated hepatic injury: mediation by tumor necrosis factors and protection by interleukin 6. J Exp Med 179:1529–1537PubMedCrossRefGoogle Scholar
  120. 120.
    Mourkioti F, Rosenthal N (2008) NF-B signaling in skeletal muscle: prospects for intervention in muscle diseases. J Mol Med 86:747–759PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Musaro A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N (2001) Localized IGF-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27:195–200PubMedCrossRefGoogle Scholar
  122. 122.
    Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A, Tashiro K, Shimizu S (1989) Molecular cloning and expression of human hepatocyte growth factor. Nature 342:440–443PubMedCrossRefGoogle Scholar
  123. 123.
    Nakamura T, Teramoto H, Ichihara A (1986) Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary cultures. Proc Natl Acad Sci 83:6489–6493PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Nielsen AR, Mounier R, Plomgaard P, Mortensen OH, Penkowa M, Speerschneider T, Pilegaard H, Pedersen BK (2007a) Expression of interleukin-15 in human skeletal muscle: effect of exercise and muscle fibre type composition. J Physiol 584:305–312PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Nieman DC, Davis JM, Brown VA, Henson DA, Dumke CL, Utter AC, Vinci DM, Downs MF, Smith JC, Carson J, Brown A, McAnulty SR, McAnulty LS (2004) Influence of carbohydrate ingestion on immune changes after 2 h of intensive resistance training. J Appl Physiol 96:1292–1298Google Scholar
  126. 126.
    Nieman DC, Davis JM, Henson DA, Walberg-Rankin J, Shute M, Dumke CL, Utter AC, Vinci DM, Carson JA, Brown A, Lee WJ, McAnulty SR, McAnulty LS (2003) Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. J Appl Physiol 94:1917–1925PubMedCrossRefGoogle Scholar
  127. 127.
    Nieman DC, Henson DA, McAnulty SR, McAnulty L, Swick NS, Utter AC, Vinci DM, Opiela SJ, Morrow JD (2002) Influence of vitamin C supplementation on oxidative and immune changes after an ultramarathon. J Appl Physiol 92:1970–1977PubMedCrossRefGoogle Scholar
  128. 128.
    Nieman DC, Henson DA, Smith LL, Utter AC, Vinci DM, Davis JM, Kaminsky DE, Shute M (2001) Cytokine changes after a marathon race. J Appl Physiol 91:109–114PubMedGoogle Scholar
  129. 129.
    Nishimoto N, Yoshizaki K, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Hashimoto J, Azuma J, Kishimoto T (2004) Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum 50:1761–1769PubMedCrossRefGoogle Scholar
  130. 130.
    Norrby K (1996) Interleukin-8 and de novo mammalian angiogenesis. Cell Prolif 29:315–323PubMedCrossRefGoogle Scholar
  131. 131.
    Orzechowski A, Łokociejewska M, Pawlikowska P, Kruszewski A (2005) Preincubation with sodium ascorbate potentiates insulin-dependent PKB/Akt and c-Jun phosphorylation in L6 rat myoblasts challenged with reactive oxygen/nitrogen species. Life Sci 77:496–511PubMedCrossRefGoogle Scholar
  132. 132.
    Ostrowski K, Hermann C, Bangash A, Schjerling P, Nielsen JN, Pedersen BK (1998a) A trauma-like elevation of plasma cytokines in humans in response to treadmill running. J Physiol 513:889–894PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK (2001) Chemokines are elevated in plasma after strenuous exercise in humans. Eur J Appl Physiol 84:244–245PubMedCrossRefGoogle Scholar
  134. 134.
    Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK (1999) Pro and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol 515:287–291PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Ostrowski K, Rohde T, Zacho M, Asp S, Pedersen BK (1998b) Evidence that IL-6 is produced in skeletal muscle during prolonged running. J Physiol 508:949–953PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Ostrowski K, Schjerling P, Pedersen BK (2000) Physical activity and plasma interleukin-6 in humans: effect of intensity of exercise. Eur J Appl Physiol 83:512–515PubMedCrossRefGoogle Scholar
  137. 137.
    Panagiotakos DB, Pitsavos C, Chrysohoou C, Kavouras S, Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406CrossRefGoogle Scholar
  138. 138.
    Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406Google Scholar
  139. 139.
    Pedersen BK, Saltin B (2006) Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports 16(Suppl 1):3–63PubMedCrossRefGoogle Scholar
  140. 140.
    Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, Wolsk-Petersen E, Febbraio M (2004) The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor? Proc Nutr Soc 63:263–267PubMedCrossRefGoogle Scholar
  141. 141.
    Pedersen BK, Steensberg A, Keller P, Keller C, Fischer C, Hiscock N (2003b) Hall Gv Plomgaard P and Febbraio MA. Muscle-derived interleukin-6: lipolytic, anti-inflammatory and immune regulatory effects. Pflugers Arch 446:9–16PubMedCrossRefGoogle Scholar
  142. 142.
    Pedersen M, Bruunsgaard H, Weis N, Hendel HW, Andreassen BU, Eldrup E, Dela F, Pedersen BK (2003a) Circulating levels of TNF-alpha and IL-6-relation to truncal fat mass and muscle mass in healthy elderly individuals and in patients with type-2 diabetes. Mech Ageing Dev 124:495–502PubMedCrossRefGoogle Scholar
  143. 143.
    Penkowa M, Keller C, Keller P, Jauffred S, Pedersen BK (2003) Immunohistochemical detection of interleukin-6 in human skeletal muscle fibers following exercise. FASEB J 17:2166–2168PubMedGoogle Scholar
  144. 144.
    Philippou A, Halapas A, Maridaki M, Koutsilieris M (2004) Type I insulin-like growth factor receptor signaling in skeletal muscle regeneration and hypertrophy. J Musculoskelet Neuronal Physiol 96:1292–1298Google Scholar
  145. 145.
    Pijet B, Pijet M, Litwiniuk A, Gajewska M, Pajak B, Orzechowski A (2013a) TNF- and IFN-s-Dependent Muscle Decay Is Linked to NF- B- and STAT-1 -Stimulated Atrogin1 and MuRF1 Genes in C2C12 Myotubes. Mediators Inflamm 2013 (171437): 18  http://dx.doi.org/10.1155/2013/171437
  146. 146.
    Pijet M, Pijet B, Litwiniuk A, Pajak B, Gajkowska B, Orzechowski A (2013b) Leptin impairs myogenesis in C2C12 cells through JAK/STAT and MEK signaling pathways. Cytokine 61:445–454PubMedCrossRefGoogle Scholar
  147. 147.
    Plomgaard P, Bouzakri K, Krogh-Madsen R, Mittendorfer B, Zierath JR, Pedersen BK (2005) TNF-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 54:2939–2945PubMedCrossRefGoogle Scholar
  148. 148.
    Plomgaard P, Nielsen AR, Fischer CP, Mortensen OH, Broholm C, Penkowa M, Krogh-Madsen R, Erikstrup C, Lindegaard B, Petersen AM, Taudorf S, Pedersen BK (2007) Associations between insulin resistance and TNF-alpha in plasma, skeletal muscle and adipose tissue in humans with and without type 2 diabetes. Diabetologia 50:2562–2571PubMedCrossRefGoogle Scholar
  149. 149.
    Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, risk of developing type 2 diabetes mellitus. JAMA 286:327–334PubMedCrossRefGoogle Scholar
  150. 150.
    Quinn LS, Anderson BG, Drivdahl RH, Alvarez B, Argiles JM (2002) Overexpression of interleukin-15 induces skeletal muscle hypertrophy in vitro: implications for treatment of muscle wasting disorders. Exp Cell Res 280:55–63PubMedCrossRefGoogle Scholar
  151. 151.
    Quinn LS, Haugk KL, Damon SE (1997) Interleukin-15 stimulates C2 skeletal myoblast differentiation. Biochem Biophys Res Commun 239:6–10PubMedCrossRefGoogle Scholar
  152. 152.
    Quinn LS, Strait-Bodey L, Anderson BG, Argiles JM, Havel PJ (2005) Interleukin-15 stimulates adiponectin secretion by 3 T3–L1 adipocytes: evidence for a skeletal muscle-to-fat signaling pathway. Cell Biol Int 29:449–457PubMedCrossRefGoogle Scholar
  153. 153.
    Ramprasad MP, Fischer W, Witztum JL, Sambrano GR, Quehenberger O, Steinberg D (1995) The 94- to 97-kDa mouse macrophage membrane protein that recognizes oxidized low density lipoprotein and phosphatidylserine-rich liposomes is identical to macrosialin, the mouse homologue of human CD68. Proc Natl Acad Sci U S A 92:9580–9584PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Rapraeger AC (2000) Syndecan-regulated receptor signaling. J Cell Biol 149:995–998PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Rhind SG, Gannon GA, Shephard RJ, Shek PN (2002) Indomethacin modulates circulating cytokine responses to strenuous exercise in humans. Cytokine 19:153–158PubMedCrossRefGoogle Scholar
  156. 156.
    Roberts CK, Barnard RJ, Jasman A, Balon TW (1999) Acute exercise increases nitric oxide synthase activity in skeletal muscle. Am J Physiol Endocrinol Metab 277:E390–E394Google Scholar
  157. 157.
    Roubenoff R, Roubenoff RA, Cannon JG, Kehayias JJ, Zhuang H, Lawson-Hughes B, Dinarello CA, Rosenberg IH (1994) Rheumatoid cachexia: cytokine-driven hypermetabolism accompanying reduced body cell mass in chronic inflammation. J Clin Invest 93:2379–2386PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Sacheck JM, Ohtsuka A, McLary SC, Goldberg AL (2004) IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am J Physiol Endocrinol Metab 287:E591–E601PubMedCrossRefGoogle Scholar
  159. 159.
    Salehian B, Mahabadi V, Bilas J, Taylor WE, Ma K (2006) The effect of glutamine on prevention of glucocorticoid-induced skeletal muscle atrophy is associated with myostatin suppression. Metabolism 55:1239–1247. doi: 10.1016/j.metabol.2006.05.009 PubMedCrossRefGoogle Scholar
  160. 160.
    Sarbassov D, Jones LG, Peterson CA (1997) Extracellular Signal-Regulated Kinase-1 and -2 Respond Differently to Mitogenic and Differentiative Signaling Pathways in Myoblasts. Mol Endocrinol 11:2038–2047PubMedCrossRefGoogle Scholar
  161. 161.
    Sarbassov D, Stefanova R, Grigoriev VG, Peterson CA (1995) Role of insulin-like growth factors and myogenin in the altered program of proliferation and differentiation in the NFB4 mutant muscle cell line. Proc Natl Acad Sci U S A 92:10874–10878PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Scata KA, Bernard DW, Fox J, Swain JL (1999) FGF receptor availability regulates skeletal myogenesis. Exp Cell Res 250:10–21PubMedCrossRefGoogle Scholar
  163. 163.
    Schaeper U, Birchmeier W (2004) Cell migration in development and disease. HGF/SF c-Met signaling in the epithelial-mesenchymal transition and migration of muscle progenitor cells. Ed. Doris Wedlich. Wiley-VCH 11:191–202Google Scholar
  164. 164.
    Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W, Braun T, Tobin JF, Lee S-J (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350:2682–2688PubMedCrossRefGoogle Scholar
  165. 165.
    Sheehan SM, Tatsumi R, Temm-Grove CJ, Allen RE (2000) HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro. Muscle Nerve 23:239–245PubMedCrossRefGoogle Scholar
  166. 166.
    Shi X, Garry DJ (2006) Muscle stem cells in development, regeneration, and disease. Genes Dev 20:1692–1708PubMedCrossRefGoogle Scholar
  167. 167.
    Silveira LR, Pereira-Da-Silva L, Juel C, Hellsten Y (2003) Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contractions. Free Radic Biol Med 35:455–464PubMedCrossRefGoogle Scholar
  168. 168.
    Smith MA, Moylan JS, Smith JD, Li W, Reid MB (2007) IFN-gamma does not mimic the catabolic effects of TNF-alpha. Am J Phys Cell Phys 293:C1947–C1952CrossRefGoogle Scholar
  169. 169.
    Spiller MP, Kambadur R, Jeanplong F, Thomas M, Martyn JK, Bass JJ, Sharma M (2002) The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD. Mol Cell Biol 22:7066–7082. doi: 10.1128/MCB.22.20.7066-7082.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    St. Pierre BA, Tidball JG (1994) Differential response of macrophage subpopulations to soleus muscle reloading after rat hindlimb suspension. J Appl Physiol 77:290–297PubMedGoogle Scholar
  171. 171.
    Stahl N, Farruggella TJ, Boulton TG, Zhong Z, Darnell JE Jr, Yancopoulos GD (1995) Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 267:1349–1353PubMedCrossRefGoogle Scholar
  172. 172.
    Starkie RL, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK (2003) Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J 17:884–886PubMedGoogle Scholar
  173. 173.
    Starkie RL, Angus DJ, Rolland J, Hargreaves M, Febbraio M (2000) Effect of prolonged submaximal exercise and carbohydrate ingestion on monocyte intracellular cytokine production in humans. J Physiol 528:647–655PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Starkie RL, Arkinstall MJ, Koukoulas I, Hawley JA, Febbraio MA (2001a) Carbohydrate ingestion attenuates the increase in plasma interleukin-6, but not skeletal muscle interleukin-6 mRNA, during exercise in humans. J Physiol 533:585–591PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Starkie RL, Rolland J, Angus DJ, Anderson MJ, Febbraio MA (2001b) Circulating monocytes are not the source of elevations in plasma IL-6 and TNF-alpha levels after prolonged running. Am J Phys Cell Phys 280:C769–C774Google Scholar
  176. 176.
    Steensberg A, Febbraio MA, Osada T, Schjerling P, van Hall G, Saltin B, Pedersen BK (2001a) Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol 537:633–639PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Steensberg A, Fischer CP, Keller C, Moller K, Pedersen BK (2003) IL-6 enhances plasma IL-1ra, IL-10, cortisol in humans. Am J Physiol Endocrinol Metab 285:E433–E437PubMedCrossRefGoogle Scholar
  178. 178.
    Steensberg A, Keller C, Hillig T, Frosig C, Wojtaszewski JF, Pedersen BK, Pilegaard H, Sander M (2007) Nitric oxide production is a proximal signaling event controlling exercise-induced mRNA expression in human skeletal muscle. FASEB J 21:2683–2694PubMedCrossRefGoogle Scholar
  179. 179.
    Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Klarlund PB (2000) Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 529:237–242PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Stefanadis C (2005) The associations between leisure-time physical activity and inflammatory and coagulation markers related to cardiovascular disease: the ATTICA Study. Prev Med 40:432–437PubMedCrossRefGoogle Scholar
  181. 181.
    Stouthard JM, van der Romijn JAPT, Endert E, Klein S, Bakker PJ, Veenhof CH, Sauerwein HP (1995) Endocrinologic and metabolic effects of interleukin-6 in humans. Am J Phys 268:E813–E819Google Scholar
  182. 182.
    Suelves M, Lopez-Alemany R, Lluis F, Aniorte G, Serrano E, Parra M, Carmeliet P, Munoz-Canoves P (2002) Plasmin activity is required for myogenesis in vitro and skeletal muscle regeneration in vivo. Blood 99:2835–2844PubMedCrossRefGoogle Scholar
  183. 183.
    Suzuki S, Yamanouchi K, Soeta C, Katakai Y, Harada R, Naito K, Tojo H (2002) Skeletal muscle injury induces hepatocyte growth factor expression in spleen. Biochem Biophys Res Commun 292:709–714PubMedCrossRefGoogle Scholar
  184. 184.
    Szabo G, Dallmann G, Muller G, Patthy L, Soller M, Varga L (1998) A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice. Mamm Genome 9:671–672PubMedCrossRefGoogle Scholar
  185. 185.
    Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194:114–128PubMedCrossRefGoogle Scholar
  186. 186.
    Tatsumi R, Hattori A, Ikeuchi Y, Anderson JE, Allen RE (2002) Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol Biol Cell 13:2909–2918PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Taylor WE, Bhasin S, Artaza J, Byhower F, Azam M, Willard DH Jr, Kull FC Jr, Gonzalez-Cadavid N (2001) Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. Am J Physiol Endocrinol Metab 280:E221–E228PubMedGoogle Scholar
  188. 188.
    Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275:40235–40243. doi: 10.1074/jbc. M004356200 PubMedCrossRefGoogle Scholar
  189. 189.
    Thompson D, Williams C, McGregor SJ, Nicholas CW, McArdle F, Jackson MJ, Powell JR (2001) Prolonged vitamin C supplementation and recovery from demanding exercise. Int J SportNutr Exerc Metab 11:466–481CrossRefGoogle Scholar
  190. 190.
    Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Phys Regul Integr Comp Phys 298:R1173–R1187Google Scholar
  191. 191.
    Tidball JG, Berchenko E, Frenette J (1999) Macrophage invasion does not contribute to muscle membrane injury during inflammation. J Leukoc Biol 65:492–498PubMedGoogle Scholar
  192. 192.
    Tisdale MJ (1999) Wasting in cancer. J Nutr 129:243S–246SPubMedGoogle Scholar
  193. 193.
    Tkatchenko AV, Le Cam G, Leger JJ, Dechesne CA (2000) Largescale analysis of differential gene expression in the hindlimb muscles and diaphragm of mdx mouse. Biochim Biophys Acta 1500:17–30PubMedCrossRefGoogle Scholar
  194. 194.
    Tolosa L, Morla M, Iglesias A, Busquets X, Llado J, Olmos G (2005) IFN-gamma prevents TNF-alpha-induced apoptosis in C2C12 myotubes through down-regulation of TNF-R2 and increased NF-kappaB activity. Cell Signal 17:1333–1342PubMedCrossRefGoogle Scholar
  195. 195.
    Torrente Y, El Fahime E, Caron NJ, Del Bo R, Belicchi M, Pisati F, Tremblay JP, Bresolin N (2003) Tumor necrosis factor-alpha (TNF- ) stimulates chemotactic response in mouse myogenic cells. Cell Transplant 12:91–100PubMedCrossRefGoogle Scholar
  196. 196.
    Torres SH, De Sanctis JB, De Briceño L, Hernandez N, Finol HJ (2004) Inflammation and nitric oxide production in skeletal muscle of type 2 diabetic patients. J Endocrinol 181:419–427PubMedCrossRefGoogle Scholar
  197. 197.
    Tseng BS, Zhao P, Pattison JS, Gordon SE, Granchelli JA, Madsen RW, Folk LC, Hoffman EP, Booth FW (2002) Regenerated mdx mouse skeletal muscle shows differential mRNA expression. J Appl Physiol 93:537–545PubMedCrossRefGoogle Scholar
  198. 198.
    Van Dam H, Castellazzi M (2001) Distinct roles of Jun:Fos and Jun:ATF dimers in oncogenesis. Oncogene 20:2453–2464PubMedCrossRefGoogle Scholar
  199. 199.
    Van Hall G, Steensberg A, Sacchetti M, Fischer C, Keller C, Schjerling P, Hiscock N, Moller K, Saltin B, Febbraio MA, Pedersen BK (2003) Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab 88:3005–3010PubMedCrossRefGoogle Scholar
  200. 200.
    Vassilakopoulos T, Karatza MH, Katsaounou P, Kollintza A, Zakynthinos S, Roussos C (2003) Antioxidants attenuate the plasma cytokine response to exercise in humans. J Appl Physiol 94:1025–1032PubMedCrossRefGoogle Scholar
  201. 201.
    Villalta SA, Nguyen HX, Deng B, Gotoh T, Tidball JG (2009) Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum Mol Genet 18:482–496PubMedCrossRefGoogle Scholar
  202. 202.
    Wagner KR, McPherron AC, Winik N, Lee SJ (2002) Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann Neurol 52:832–836PubMedCrossRefGoogle Scholar
  203. 203.
    Wang H, Hertlein E, Bakkar N, Sun H, Acharyya S, Wang J, Carathers M, Davuluri R, Guttridge DC (2007) NF-κB regulation of YY1 inhibits skeletal myogenesis through transcriptional silencing of myofibrillar genes. Mol Cell Biol 27:4374–4387PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Warren GL, Hulderman T, Jensen N, McKinstry M, Mishra M, Luster MI, Simeonova PP (2002) Physiological role of tumor necrosis factor α in traumatic muscle injury. FASEB J 16:1630–1632PubMedGoogle Scholar
  205. 205.
    Watt MJ, Dzamko N, Thomas WG, Rose-John S, Ernst M, Carling D, Kemp BE, Febbraio MA, Steinberg GR (2006) CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nat Med 12:541–548PubMedCrossRefGoogle Scholar
  206. 206.
    Watts R, McAinch AJ, Dixon JB, O’Brien PE, Cameron-Smith D (2013) Increased Smad signaling and reduced MRF expression in skeletal muscle from obese subjects. Obesity (SilverSpring) 21:525–528. doi: 10.1002/oby.20070 CrossRefGoogle Scholar
  207. 207.
    Wieteska-Skrzeczyńska W, Grzelkowska-Kowalczyk K, Rejmak E (2011a) Growth factor and cytokine interactions in myogenesis. Part II. Expression of IGF binding proteins and protein kinases essential for myogenesis in mouse C2C12 myogenic cells exposed to TNF-α and IFN-γ. Pol J Vet Sci 14:425–431PubMedGoogle Scholar
  208. 208.
    Wieteska-Skrzeczyńska W, Grzelkowska-Kowalczyk K, Tokarska J, Grabiec K (2011b) Growth factor and cytokine interactions in myogenesis. Part I. The effect of TNF-α and IFN-γ on IGF-I-dependent differentiation in mouse C2C12 myogenic cells. Pol J Vet Sci 14:417–424PubMedGoogle Scholar
  209. 209.
    Willerson JT, Ridker PM (2004) Inflammation as a cardiovascular risk factor. Circulation 109:II2–I10PubMedCrossRefGoogle Scholar
  210. 210.
    Williamson D, Gallagher P, Harber M, Hollon C, Trappe S (2003) Mitogen-activated protein kinase (MAPK) pathway activation: effects of age and acute exercise on human skeletal muscle. J Physiol 547:977–987PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Willoughby DS, McFarlin B, Bois C (2003) Interleukin-6 expression after repeated bouts of eccentric exercise. Int J Sports Med 24:15–21PubMedCrossRefGoogle Scholar
  212. 212.
    Wojtaszewski JF, Jorgensen SB, Frosig C, Macdonald C, Birk JB, Richter EA (2003) Insulin signalling: effects of prior exercise. Acta Physiol Scand 178:321–328PubMedCrossRefGoogle Scholar
  213. 213.
    Woods A, zzout-Marniche D, Foretz M, Stein SC, Lemarchand P, Ferre P, Foufelle F, Carling D (2000) Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol Cell Biol 20:6704–6711PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Yablonka-Reuveni Z, Seger R, Rivera AJ (1999) Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. J Histochem Cytochem 47:23–42PubMedCrossRefGoogle Scholar
  215. 215.
    Yamanouchi K, Soeta C, Naito K, Tojo H (2000) Expression of myostatin gene in regenerating skeletal muscle of the rat and its localization. Biochem Biophys Res Commun 270:510–516PubMedCrossRefGoogle Scholar
  216. 216.
    Yang SY, Goldspink G (2002) Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation. FEBS Lett 522:156–160PubMedCrossRefGoogle Scholar
  217. 217.
    Yordy JS, Muise-Helmericks RC (2000) Signal transduction and the Ets family of transcription factors. Oncogene 19:6503–6513PubMedCrossRefGoogle Scholar
  218. 218.
    Zádor E, Mendler L, Takács V, de Bleecker J, Wuytack F (2001) Regenerating soleus and extensor digitorum longus muscles of the rat show elevated levels of TNF-α and its receptors, TNFR-60 and TNFR-80. Muscle Nerve 24:1058–1067PubMedCrossRefGoogle Scholar
  219. 219.
    Zarnegar R, Michalopoulos GK (1995) The many faces of hepatocyte growth factor: from hepatopoiesis to hematopoiesis. J Cell Biol 129:1177–1180PubMedCrossRefGoogle Scholar
  220. 220.
    Zerria K, Jerbi E, Hammami S, Maaroufi A, Boubaker S, Xiong JP, Arnaout MA, Fathallah DM (2006) Recombinant integrin CD11b A-domain blocks polymorphonuclear cells recruitment and protects against skeletal muscle inflammatory injury in the rat. Immunology 1194:431–440CrossRefGoogle Scholar
  221. 221.
    Zetser A, Gredinger E, Bengal E (1999) p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the Mef2c transcription factor. J Biol Chem 274:5193–5200PubMedCrossRefGoogle Scholar
  222. 222.
    Zhu X, Hadhazy M, Wehling M, Tidball JG, McNally EM (2000) Dominant negative myostatin produces hypertrophy without hyperplasia in muscle. FEBS Lett 474:71–75PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Physiological Sciences, Faculty of Veterinary MedicineWarsaw University of Life Sciences – SGGWWarsawPoland

Personalised recommendations