Skip to main content

Role of the Ubiquitin-Proteasome Pathway in Skeletal Muscle

  • Chapter
  • First Online:
The Plasticity of Skeletal Muscle
  • 1210 Accesses

Abstract

Skeletal muscle is a plastic organ that is maintained by multiple pathways regulating cell and protein turnover. The ubiquitin-proteasome system (UPS) is now recognized as a major intracellular degradation system, and its proper function is critical to health and muscle homeostasis. Alterations in muscle proteasomes have been linked to several pathological phenotypes. Indeed, excessive or defective activity of UPS leads to detrimental effects on muscle homeostasis. Emerging evidence suggests that UPS can specifically target proteins that govern pathological signaling pathways for degradation, thus altering downstream effectors and disease outcomes. An increasing number of studies link abnormalities in the regulation of UPS to myofiber degeneration and muscle weakness. Therefore, an understanding of the pathogenic role of the proteostatic system in each inherited muscle disorder may provide novel therapeutic targets to counteract muscle wasting. In this section, we focus on the function of the proteasome system with respect to several diseases with altered proteostasis.

Study Funding

This study was supported by an Intramural Research Grant (26-7, 26-8) for Neurological and Psychiatric Disorders through the NCNP; a grant for Research on Rare and Intractable Diseases (H26-intractable disease 037 and 082, H26-nanchitou(nan)-ippan-079) from the Ministry of Health, Labour and Welfare of Japan; Health and Labour Sciences Research Grants for Comprehensive Research on Persons with Disabilities from Japan Agency for Medical Research and Development (15Adk0310043h0002); Grants-in-Aid for Research on Rare and Intractable Diseases; a Grant-in-Aid for Challenging Exploratory Research (26670436); a Grant-in-Aid for Young Scientists (B) (15K16486); a Grant-in-Aid for Young Scientists (A) (15H05667) from the Japanese Ministry of Education, Culture, Sports, Science and Technology; and a Grant-in-Aid for JSPS Fellows (16J00431).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78(5):761–771

    Article  CAS  PubMed  Google Scholar 

  2. Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068. doi:10.1146/annurev.biochem.68.1.1015

    Article  CAS  PubMed  Google Scholar 

  3. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428. doi:10.1152/physrev.00027.2001

    Article  CAS  PubMed  Google Scholar 

  4. Sandri M, Coletto L, Grumati P, Bonaldo P (2013) Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. J Cell Sci 126(Pt 23):5325–5333. doi:10.1242/jcs.114041

    Article  CAS  PubMed  Google Scholar 

  5. Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7(11):1062–1067. doi:10.1038/80992

    Article  CAS  PubMed  Google Scholar 

  6. Goldberg AL (2005) Nobel committee tags ubiquitin for distinction. Neuron 45(3):339–344. doi:10.1016/j.neuron.2005.01.019

    Article  CAS  PubMed  Google Scholar 

  7. Benaroudj N, Zwickl P, Seemuller E, Baumeister W, Goldberg AL (2003) ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol Cell 11(1):69–78

    Article  CAS  PubMed  Google Scholar 

  8. Schmidt M, Hanna J, Elsasser S, Finley D (2005) Proteasome-associated proteins: regulation of a proteolytic machine. Biol Chem 386(8):725–737. doi:10.1515/BC.2005.085

    Article  CAS  PubMed  Google Scholar 

  9. Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, Shoelson SE (2004) IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 119(2):285–298 doi:S0092867404009006 [pii] 10.1016/j.cell.2004.09.027

    Article  CAS  PubMed  Google Scholar 

  10. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117(3):399–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14(3):395–403

    Article  CAS  PubMed  Google Scholar 

  12. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294(5547):1704–1708. doi:10.1126/science.1065874

    Article  CAS  PubMed  Google Scholar 

  13. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 98(25):14440–14445. doi:10.1073/pnas.251541198 251541198 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cong H, Sun L, Liu C, Tien P (2011) Inhibition of atrogin-1/MAFbx expression by adenovirus-delivered small hairpin RNAs attenuates muscle atrophy in fasting mice. Hum Gene Ther 22(3):313–324. doi:10.1089/hum.2010.057

    Article  CAS  PubMed  Google Scholar 

  15. Kedar V, McDonough H, Arya R, Li HH, Rockman HA, Patterson C (2004) Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci U S A 101(52):18135–18140. doi:10.1073/pnas.0404341102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E, Glass DJ (2007) The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 6(5):376–385. doi:10.1016/j.cmet.2007.09.009

    Article  CAS  PubMed  Google Scholar 

  17. Polge C, Heng AE, Jarzaguet M, Ventadour S, Claustre A, Combaret L, Bechet D, Matondo M, Uttenweiler-Joseph S, Monsarrat B, Attaix D, Taillandier D (2011) Muscle actin is polyubiquitinylated in vitro and in vivo and targeted for breakdown by the E3 ligase MuRF1. FASEB J 25(11):3790–3802. doi:10.1096/fj.11-180968

    Article  CAS  PubMed  Google Scholar 

  18. Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner C, Latres E, Goldberg AL (2009) During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol 185(6):1083–1095. doi:10.1083/jcb.200901052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Csibi A, Cornille K, Leibovitch MP, Poupon A, Tintignac LA, Sanchez AM, Leibovitch SA (2010) The translation regulatory subunit eIF3f controls the kinase-dependent mTOR signaling required for muscle differentiation and hypertrophy in mouse. PLoS One 5(2):e8994. doi:10.1371/journal.pone.0008994

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tintignac LA, Lagirand J, Batonnet S, Sirri V, Leibovitch MP, Leibovitch SA (2005) Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol Chem 280(4):2847–2856. doi:10.1074/jbc.M411346200

    Article  CAS  PubMed  Google Scholar 

  21. Paul PK, Gupta SK, Bhatnagar S, Panguluri SK, Darnay BG, Choi Y, Kumar A (2010) Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J Cell Biol 191(7):1395–1411. doi:10.1083/jcb.201006098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A, Yamamoto M, Yue Z, Uchiyama Y, Kominami E, Tanaka K (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131(6):1149–1163 doi:S0092-8674(07)01354-2 [pii] 10.1016/j.cell.2007.10.035

    Article  CAS  PubMed  Google Scholar 

  23. Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P, Bilusic I, Theurillat JP, Overvatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, Johansen T (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33(4):505–516 doi:S1097-2765(09)00064-1 [pii] 10.1016/j.molcel.2009.01.020

    Article  CAS  PubMed  Google Scholar 

  24. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145. doi:10.1074/jbc.M702824200

    Article  CAS  PubMed  Google Scholar 

  25. Paul PK, Bhatnagar S, Mishra V, Srivastava S, Darnay BG, Choi Y, Kumar A (2012) The E3 ubiquitin ligase TRAF6 intercedes in starvation-induced skeletal muscle atrophy through multiple mechanisms. Mol Cell Biol 32(7):1248–1259. doi:10.1128/MCB.06351-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar A, Bhatnagar S, Paul PK (2012) TWEAK and TRAF6 regulate skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care 15(3):233–239. doi:10.1097/MCO.0b013e328351c3fc

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi J, Luo L, Eash J, Ibebunjo C, Glass DJ (2011) The SCF-Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling. Dev Cell 21(5):835–847. doi:10.1016/j.devcel.2011.09.011

    Article  PubMed  Google Scholar 

  28. Sakao Y, Kawai T, Takeuchi O, Copeland NG, Gilbert DJ, Jenkins NA, Takeda K, Akira S (2000) Mouse proteasomal ATPases Psmc3 and Psmc4: genomic organization and gene targeting. Genomics 67(1):1–7 doi:S0888-7543(00)96231-1 [pii] 10.1006/geno.2000.6231

    Article  CAS  PubMed  Google Scholar 

  29. Marx FP, Soehn AS, Berg D, Melle C, Schiesling C, Lang M, Kautzmann S, Strauss KM, Franck T, Engelender S, Pahnke J, Dawson S, von Eggeling F, Schulz JB, Riess O, Kruger R (2007) The proteasomal subunit S6 ATPase is a novel synphilin-1 interacting protein–implications for Parkinson’s disease. FASEB J 21(8):1759–1767 doi:fj.06-6734com [pii] 10.1096/fj.06-6734com

    Article  CAS  PubMed  Google Scholar 

  30. Tashiro Y, Urushitani M, Inoue H, Koike M, Uchiyama Y, Komatsu M, Tanaka K, Yamazaki M, Abe M, Misawa H, Sakimura K, Ito H, Takahashi R (2012) Motor neuron-specific disruption of proteasomes, but not autophagy, replicates amyotrophic lateral sclerosis. J Biol Chem 287(51):42984–42994. doi:10.1074/jbc.M112.417600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kitajima Y, Tashiro Y, Suzuki N, Warita H, Kato M, Tateyama M, Ando R, Izumi R, Yamazaki M, Abe M, Sakimura K, Ito H, Urushitani M, Nagatomi R, Takahashi R, Aoki M (2014) Proteasome dysfunction induces muscle growth defects and protein aggregation. J Cell Sci 127(Pt 24):5204–5217. doi:10.1242/jcs.150961

    Article  PubMed  PubMed Central  Google Scholar 

  32. McPherron AC, Lawler AM, Lee SJ (1999) Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat Genet 22(3):260–264. doi:10.1038/10320

    Article  CAS  PubMed  Google Scholar 

  33. Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6(1):25–39. doi:10.1242/dmm.010389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Amato AA, Barohn RJ (2009) Inclusion body myositis: old and new concepts. J Neurol Neurosurg Psychiatry 80(11):1186–1193 doi:80/11/1186 [pii] 10.1136/jnnp.2009.173823

    Article  CAS  PubMed  Google Scholar 

  35. Askanas V, Engel WK, Nogalska A (2009) Inclusion body myositis: a degenerative muscle disease associated with intra-muscle fiber multi-protein aggregates, proteasome inhibition, endoplasmic reticulum stress and decreased lysosomal degradation. Brain Pathol 19(3):493–506 doi:BPA290 [pii] 10.1111/j.1750-3639.2009.00290.x

    Article  CAS  PubMed  Google Scholar 

  36. Needham M, Mastaglia FL (2007) Inclusion body myositis: current pathogenetic concepts and diagnostic and therapeutic approaches. Lancet Neurol 6(7):620–631 doi:S1474-4422(07)70171-0 [pii] 10.1016/S1474-4422(07)70171-0

    Article  PubMed  Google Scholar 

  37. Fratta P, Engel WK, McFerrin J, Davies KJ, Lin SW, Askanas V (2005) Proteasome inhibition and aggresome formation in sporadic inclusion-body myositis and in amyloid-beta precursor protein-overexpressing cultured human muscle fibers. Am J Pathol 167(2):517–526 doi:167/2/517 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Askanas V, Engel WK (2006) Inclusion-body myositis: a myodegenerative conformational disorder associated with Abeta, protein misfolding, and proteasome inhibition. Neurology 66(2 Suppl 1):S39–S48 doi:66/1_suppl_1/S39 [pii] 10.1212/01.wnl.0000192128.13875.1e

    Article  CAS  PubMed  Google Scholar 

  39. Yoshida T, Delafontaine P (2015) Mechanisms of Cachexia in chronic disease states. Am J Med Sci 350(4):250–256. doi:10.1097/MAJ.0000000000000511

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hooijman PE, Beishuizen A, Witt CC, de Waard MC, Girbes AR, Spoelstra-de Man AM, Niessen HW, Manders E, van Hees HW, van den Brom CE, Silderhuis V, Lawlor MW, Labeit S, Stienen GJ, Hartemink KJ, Paul MA, Heunks LM, Ottenheijm CA (2015) Diaphragm muscle fiber weakness and ubiquitin-proteasome activation in critically ill patients. Am J Respir Crit Care Med 191(10):1126–1138. doi:10.1164/rccm.201412-2214OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Olive M, Abdul-Hussein S, Oldfors A, Gonzalez-Costello J, van der Ven PF, Furst DO, Gonzalez L, Moreno D, Torrejon-Escribano B, Alio J, Pou A, Ferrer I, Tajsharghi H (2015) New cardiac and skeletal protein aggregate myopathy associated with combined MuRF1 and MuRF3 mutations. Hum Mol Genet 24(13):3638–3650. doi:10.1093/hmg/ddv108

    CAS  PubMed  Google Scholar 

  42. Richard I, Broux O, Allamand V, Fougerousse F, Chiannilkulchai N, Bourg N, Brenguier L, Devaud C, Pasturaud P, Roudaut C et al (1995) Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 81(1):27–40

    Article  CAS  PubMed  Google Scholar 

  43. Liu J, Chen Q, Huang W, Horak KM, Zheng H, Mestril R, Wang X (2006) Impairment of the ubiquitin-proteasome system in desminopathy mouse hearts. FASEB J 20(2):362–364 doi:05-4869fje [pii] 10.1096/fj.05-4869fje

    Article  CAS  PubMed  Google Scholar 

  44. Kramerova I, Kudryashova E, Venkatraman G, Spencer MJ (2005) Calpain 3 participates in sarcomere remodeling by acting upstream of the ubiquitin-proteasome pathway. Hum Mol Genet 14(15):2125–2134. doi:10.1093/hmg/ddi217

    Article  CAS  PubMed  Google Scholar 

  45. Al-Qusairi L, Prokic I, Amoasii L, Kretz C, Messaddeq N, Mandel JL, Laporte J (2013) Lack of myotubularin (MTM1) leads to muscle hypotrophy through unbalanced regulation of the autophagy and ubiquitin-proteasome pathways. FASEB J 27(8):3384–3394. doi:10.1096/fj.12-220947

    Article  CAS  PubMed  Google Scholar 

  46. Anvar SY, t Hoen PA, Venema A, van der Sluijs B, van Engelen B, Snoeck M, Vissing J, Trollet C, Dickson G, Chartier A, Simonelig M, van Ommen GJ, van der Maarel SM, Raz V (2011) Deregulation of the ubiquitin-proteasome system is the predominant molecular pathology in OPMD animal models and patients. Skelet Muscle 1(1):15. doi:10.1186/2044-5040-1-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vignaud A, Ferry A, Huguet A, Baraibar M, Trollet C, Hyzewicz J, Butler-Browne G, Puymirat J, Gourdon G, Furling D (2010) Progressive skeletal muscle weakness in transgenic mice expressing CTG expansions is associated with the activation of the ubiquitin-proteasome pathway. Neuromuscul Disord 20(5):319–325. doi:10.1016/j.nmd.2010.03.006

    Article  PubMed  Google Scholar 

  48. McDermott A, Jacks J, Kessler M, Emanuel PD, Gao L (2015) Proteasome-associated autoinflammatory syndromes: advances in pathogeneses, clinical presentations, diagnosis, and management. Int J Dermatol 54(2):121–129. doi:10.1111/ijd.12695

    Article  PubMed  Google Scholar 

  49. Agarwal AK, Xing C, DeMartino GN, Mizrachi D, Hernandez MD, Sousa AB, Martinez de Villarreal L, dos Santos HG, Garg A (2010) PSMB8 encoding the beta5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet 87(6):866–872. doi:10.1016/j.ajhg.2010.10.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arima K, Kinoshita A, Mishima H, Kanazawa N, Kaneko T, Mizushima T, Ichinose K, Nakamura H, Tsujino A, Kawakami A, Matsunaka M, Kasagi S, Kawano S, Kumagai S, Ohmura K, Mimori T, Hirano M, Ueno S, Tanaka K, Tanaka M, Toyoshima I, Sugino H, Yamakawa A, Tanaka K, Niikawa N, Furukawa F, Murata S, Eguchi K, Ida H, Yoshiura K (2011) Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc Natl Acad Sci U S A 108(36):14914–14919. doi:10.1073/pnas.1106015108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rayavarapu S, Coley W, Van der Meulen JH, Cakir E, Tappeta K, Kinder TB, Dillingham BC, Brown KJ, Hathout Y, Nagaraju K (2013) Activation of the ubiquitin proteasome pathway in a mouse model of inflammatory myopathy: a potential therapeutic target. Arthritis Rheum 65(12):3248–3258. doi:10.1002/art.38180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Urushitani M, Kurisu J, Tsukita K, Takahashi R (2002) Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis. J Neurochem 83(5):1030–1042

    Article  CAS  PubMed  Google Scholar 

  53. Karademir B, Corek C, Ozer NK (2015) Endoplasmic reticulum stress and proteasomal system in amyotrophic lateral sclerosis. Free Radic Biol Med 88(Pt A):42–50. doi:10.1016/j.freeradbiomed.2015.05.038

    Article  CAS  PubMed  Google Scholar 

  54. Casciati A, Ferri A, Cozzolino M, Celsi F, Nencini M, Rotilio G, Carri MT (2002) Oxidative modulation of nuclear factor-kappaB in human cells expressing mutant fALS-typical superoxide dismutases. J Neurochem 83(5):1019–1029

    Article  CAS  PubMed  Google Scholar 

  55. Rusmini P, Crippa V, Cristofani R, Rinaldi C, Cicardi ME, Galbiati M, Carra S, Malik B, Greensmith L, Poletti A (2016) The role of the protein quality control system in SBMA. J Mol Neurosci 58(3):348–364. doi:10.1007/s12031-015-0675-6

    Article  CAS  PubMed  Google Scholar 

  56. Yamakawa M, Ito D, Honda T, Kubo K, Noda M, Nakajima K, Suzuki N (2015) Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. Hum Mol Genet 24(6):1630–1645. doi:10.1093/hmg/ddu576

    Article  CAS  PubMed  Google Scholar 

  57. Talsness DM, Belanto JJ, Ervasti JM (2015) Disease-proportional proteasomal degradation of missense dystrophins. Proc Natl Acad Sci U S A 112(40):12414–12419. doi:10.1073/pnas.1508755112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bonuccelli G, Sotgia F, Schubert W, Park DS, Frank PG, Woodman SE, Insabato L, Cammer M, Minetti C, Lisanti MP (2003) Proteasome inhibitor (MG-132) treatment of mdx mice rescues the expression and membrane localization of dystrophin and dystrophin-associated proteins. Am J Pathol 163(4):1663–1675 doi:S0002-9440(10)63523-7 [pii] 10.1016/S0002-9440(10)63523-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gazzerro E, Assereto S, Bonetto A, Sotgia F, Scarfi S, Pistorio A, Bonuccelli G, Cilli M, Bruno C, Zara F, Lisanti MP, Minetti C (2010) Therapeutic potential of proteasome inhibition in Duchenne and Becker muscular dystrophies. Am J Pathol 176(4):1863–1877. doi:10.2353/ajpath.2010.090468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Araujo KP, Bonuccelli G, Duarte CN, Gaiad TP, Moreira DF, Feder D, Belizario JE, Miglino MA, Lisanti MP, Ambrosio CE (2013) Bortezomib (PS-341) treatment decreases inflammation and partially rescues the expression of the dystrophin-glycoprotein complex in GRMD dogs. PLoS One 8(4):e61367. doi:10.1371/journal.pone.0061367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Korner Z, Fontes-Oliveira CC, Holmberg J, Carmignac V, Durbeej M (2014) Bortezomib partially improves laminin alpha2 chain-deficient muscular dystrophy. Am J Pathol 184(5):1518–1528. doi:10.1016/j.ajpath.2014.01.019

    Article  CAS  PubMed  Google Scholar 

  62. Korner Z, Durbeej M (2016) Bortezomib does not reduce muscular dystrophy in the dy2J/dy2J mouse model of Laminin alpha2 chain-deficient muscular dystrophy. PLoS One 11(1):e0146471. doi:10.1371/journal.pone.0146471

    Article  PubMed  PubMed Central  Google Scholar 

  63. Azakir BA, Di Fulvio S, Kinter J, Sinnreich M (2012) Proteasomal inhibition restores biological function of mis-sense mutated dysferlin in patient-derived muscle cells. J Biol Chem 287(13):10344–10354. doi:10.1074/jbc.M111.329078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Azakir BA, Erne B, Di Fulvio S, Stirnimann G, Sinnreich M (2014) Proteasome inhibitors increase missense mutated dysferlin in patients with muscular dystrophy. Sci Transl Med 6(250):250ra112. doi:10.1126/scitranslmed.3009612

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Naoko Shimakura, Risa Ando, and Akiko Machii for their excellent technical assistance.

Conflict of Interest

There are no conflicts for interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Kitajima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kitajima, Y., Suzuki, N. (2017). Role of the Ubiquitin-Proteasome Pathway in Skeletal Muscle. In: Sakuma, K. (eds) The Plasticity of Skeletal Muscle. Springer, Singapore. https://doi.org/10.1007/978-981-10-3292-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3292-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3291-2

  • Online ISBN: 978-981-10-3292-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics