Skip to main content

Natural Silicate and Carbonate Minerals (Ores)

  • Chapter
  • First Online:
  • 1737 Accesses

Abstract

Natural silicate-type (e.g., wollastonite) and carbonate-type (e.g., limestone) ores containing alkaline earth metal are suitable for mineral carbonation reaction due to their excellent theoretical sequestration potential. Over geologic time, the natural weathering of carbonate-type ores captures and sequesters atmospheric CO2. On the other hand, vast quantities of silicate-type minerals are required to sequester a significant fraction of emitted CO2. In this chapter, the physico-chemical properties of various types of natural ores and/or minerals are illustrated. Two promising processes utilizing natural ores to capture CO2 from the flue gas, (1) accelerated mineral carbonation and (2) accelerated carbonate weathering, are discussed in detail in terms of theoretical process chemistry and practical applications, including challenges and barriers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tai CY, Chen WR, Shih S-M (2006) Factors affecting wollastonite carbonation under CO2 supercritical conditions. AIChE J 52(1):292–299. doi:10.1002/aic.10572

    Article  Google Scholar 

  2. Daval D, Martinez I, Corvisier J, Findling N, Goffé B, Guyot F (2009) Carbonation of Ca-bearing silicates, the case of wollastonite: experimental investigations and kinetic modeling. Chem Geol 265(1–2):63–78. doi:10.1016/j.chemgeo.2009.01.022

    Article  Google Scholar 

  3. Kakizawa M, Yamasaki A, Yanagisawa Y (2001) A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid. Energy 26:341–354

    Article  Google Scholar 

  4. Mckelvy MJ, Chizmeshya AVG, Diefenbacher J, Bearat H, Wolf G (2004) Exploration of the role of heat activation in enhancing serpentine carbon sequestration reactions. Environ Sci Technol 38(24):6897–6903

    Article  Google Scholar 

  5. Krevor SCM, Lackner KS (2011) Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration. Int J Greenhouse Gas Control 5(4):1073–1080. doi:10.1016/j.ijggc.2011.01.006

    Article  Google Scholar 

  6. Alexander G, Mercedesmarotovaler M, Gafarovaaksoy P (2007) Evaluation of reaction variables in the dissolution of serpentine for mineral carbonation. Fuel 86(1–2):273–281. doi:10.1016/j.fuel.2006.04.034

    Article  Google Scholar 

  7. Haug TA, Kleiv RA, Munz IA (2010) Investigating dissolution of mechanically activated olivine for carbonation purposes. Appl Geochem 25(10):1547–1563. doi:10.1016/japgeochem.2010.08.005

    Article  Google Scholar 

  8. Teir S, Bacher J, Kentta E, Satlin J (2013) Silica produced from olivine for inkjet paper coating. In: Paper presented at the accelerated carbonation for environmental and material engineering, KU Leuven, Belgium

    Google Scholar 

  9. Lackner KS (2003) A guide to CO2 sequestration. Science 300(5626):1677–1678

    Article  Google Scholar 

  10. USGS (2015) Mineral Commodity Summaries 2015. U.S. Geological Survey

    Google Scholar 

  11. Caldeira KG, Knauss KG, Rau GH (2004) Accelerated carbonate dissolution as a CO2 separation and sequestration strategy. Lawrence Livermore National Laboratory

    Google Scholar 

  12. Langer WH, San Juan CA, Rau GH, Caldeira K (2009) Accelerated weathering of limestone for CO2 mitigation opportunities for the stone and cement industries. Min Eng 61(2):27–32

    Google Scholar 

  13. McClellan G, Eades J, Fountain K, Kirk P, Rothfuf C (2002) Research and technoeconomic evaluation: uses of limestone byproducts. University of Florida

    Google Scholar 

  14. Gerdemann SJ, O’Connor WK, Dahlin DC, Penner LR, Rush H (2007) Ex situ aqueous mineral carbonation. Environ Sci Technol 41(7):2587–2593

    Article  Google Scholar 

  15. Lackner KS (2002) Carbonate chemistry for sequestering fossil carbon. Annu Rev Energy Environ 27(1):193–232. doi:10.1146/annurev.energy.27.122001.083433

    Article  Google Scholar 

  16. O’Connor WK, Dahlin DC, Rush GE, Dahlin CL, Collins WK (2002) Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products. Miner Metall Proc 19(2):95–101

    Google Scholar 

  17. Costa G, Baciocchi R, Polettini A, Pomi R, Hills CD, Carey PJ (2007) Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues. Environ Monit Assess 135(1–3):55–75. doi:10.1007/s10661-007-9704-4

    Article  Google Scholar 

  18. Haug TA, Munz IA, Kleiv RA (2011) Importance of dissolution and precipitation kinetics for mineral carbonation. Energy Procedia 4:5029–5036. doi:10.1016/j.egypro.2011.02.475

    Article  Google Scholar 

  19. O’ Connor WK, Dahlin DC, Rush GE, Gerdemann SJ, Penner LR, Nilsen DN (2005) Aqueous mineral carbonation: mineral availability, pretreatment, reaction parameters, and process studies. Albany Research Center (ARC), U.S.A

    Google Scholar 

  20. Park A, Fan L (2004) mineral sequestration: physically activated dissolution of serpentine and pH swing process. Chem Eng Sci 59(22–23):5241–5247. doi:10.1016/j.ces.2004.09.008

    Article  Google Scholar 

  21. Symonds RT, Lu DY, Macchi A, Hughes RW, Anthony EJ (2009) CO2 capture from syngas via cyclic carbonation/calcination for a naturally occurring limestone: modelling and bench-scale testing. Chem Eng Sci 64(15):3536–3543. doi:10.1016/j.ces.2009.04.043

    Article  Google Scholar 

  22. Rau GH (2011) CO2 mitigation via capture and chemical conversion in seawater. Environ Sci Technol 45:1088–1092

    Article  Google Scholar 

  23. Arakaki T, Mucci A (1995) A continuous and mechanistic representation of calcite reaction-controlled kinetics in dilute solution at 25 & #xB0;C and 1 atm total pressure. Aquat Geochem 1:105–130

    Article  Google Scholar 

  24. Plasynski S, Beckert H, Golumb DS (2008) Laboratory investigations in support of carbon dioxidide-limestone sequestration in the ocean. National Energy Technology Laboratory

    Google Scholar 

  25. Maroto-Valer MM, Tang Z, Zhang Y (2005) CO2 capture by activated and impregnated anthracites. Fuel Process Technol 86(14–15):1487–1502. doi:10.1016/j.fuproc.2005.01.003

    Article  Google Scholar 

  26. Maroto-Valer MM, Fauth DJ, Kuchta ME, Zhang Y, Andrésen JM (2005) Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration. Fuel Process Technol 86(14–15):1627–1645. doi:10.1016/j.fuproc.2005.01.017

    Article  Google Scholar 

  27. Li W, Li B, Bai Z (2009) Electrolysis and heat pretreatment methods to promote CO2 sequestration by mineral carbonation. Chem Eng Res Des 87(2):210–215. doi:10.1016/j.cherd.2008.08.001

    Article  Google Scholar 

  28. Power IM, Harrison AL, Dipple GM, Southam G (2013) Carbon sequestration via carbonic anhydrase facilitated magnesium carbonate precipitation. Int J Greenhouse Gas Control 16:145–155. doi:10.1016/j.ijggc.2013.03.011

    Article  Google Scholar 

  29. Jung S, Dodbiba G, Fujita T (2014) Mineral carbonation by blowing incineration gas containing CO2 into the solution of fly ash and ammonia for ex situ carbon capture and storage. Geosyst Eng 17(2):125–135. doi:10.1080/12269328.2014.930358

    Article  Google Scholar 

  30. Park A-HA, Fan L-S (2004) Mineral sequestration: physically activated dissolution of serpentine and pH swing process. Chem Eng Sci 59(22–23):5241–5247. doi:10.1016/j.ces.2004.09.008

    Article  Google Scholar 

  31. Moazzem S, Rasul MG, Khan MMK (2013) Energy recovery opportunities from mineral carbonation process in coal fired power plant. Appl Thermal Eng 51(1–2):281–291. doi:10.1016/j.applthermaleng.2012.09.021

    Article  Google Scholar 

  32. Rau GH, Knauss KG, Langer WH, Caldeira K (2007) Reducing energy-related CO2 emissions using accelerated weathering of limestone. Energy 32(8):1471–1477. doi:10.1016/j.energy.2006.10.011

    Article  Google Scholar 

  33. IPCC (2005) IPCC Special Report on Carbon dioxide Capture and Storage. Intergovernmental Panel on Climate Change, Cambridge. ISBN-13 978-0-521-86643-9

    Google Scholar 

  34. Ben Ghacham A, Cecchi E, Pasquier LC, Blais JF, Mercier G (2015) CO2 sequestration using waste concrete and anorthosite tailings by direct mineral carbonation in gas-solid-liquid and gas-solid routes. J Environ Manage 163:70–77. doi:10.1016/j.jenvman.2015.08.005

    Article  Google Scholar 

  35. Veetil SP, Mercier G, Blais J-F, Cecchi E, Kentish S (2015) Magnetic separation of serpentinite mining residue as a precursor to mineral carbonation. Int J Miner Process 140:19–25. doi:10.1016/j.minpro.2015.04.024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pen-Chi Chiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chiang, PC., Pan, SY. (2017). Natural Silicate and Carbonate Minerals (Ores). In: Carbon Dioxide Mineralization and Utilization. Springer, Singapore. https://doi.org/10.1007/978-981-10-3268-4_10

Download citation

Publish with us

Policies and ethics