Skip to main content

Introduction

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

Huge amount of carbon dioxide emission poses a serious threat to our environmental and biological systems. Development of sustainable energy system based on CO2 is highly desired. This chapter briefly introduces the approaches of CO2 activation and transformation, and emphasizes CO2 reduction to formic acid and methanol, which are currently considered as promising energy carriers and alternative fuels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. NASA Climate Official Site. https://climate.nasa.gov/. Accessed July, 2017

  2. Hofmann GE, Barry JP, Edmunds PJ, Gates RD, Hutchins DA, Klinger T, Sewell MA (2010) The effect of ocean acidification on calcifying organisms in marine ecosystems: An organism-to-ecosystem perspective. Annu Rev Ecol Evol Syst 41:127–147. doi:10.1146/annurev.ecolsys.110308.120227

    Article  Google Scholar 

  3. Sakakura T, Choi JC, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107(6):2365–2387. doi:10.1021/cr068357u

    Article  CAS  Google Scholar 

  4. Omae I (2012) Recent developments in carbon dioxide utilization for the production of organic chemicals. Coord Chem Rev 256(13–14):1384–1405. doi:10.1016/j.ccr.2012.03.017

    Article  CAS  Google Scholar 

  5. Liu X, He LN (2017) Synthesis of lactones and other heterocycles. Top Curr Chem 375(2):21. doi:10.1007/s41061-017-0108-9

    Article  Google Scholar 

  6. Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kuhn FE (2011) Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? Angew Chem Int Ed 50(37):8510–8537. doi:10.1002/anie.201102010

    Article  CAS  Google Scholar 

  7. Klankermayer J, Wesselbaum S, Beydoun K, Leitner W (2016) Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry. Angew Chem Int Ed 55(26):7296–7343. doi:10.1002/anie.201507458

    Article  CAS  Google Scholar 

  8. Riduan SN, Zhang Y (2010) Recent developments in carbon dioxide utilization under mild conditions. Dalton Trans 39(14):3347–3357. doi:10.1039/b920163g

    Article  CAS  Google Scholar 

  9. Otto A, Grube T, Schiebahn S, Stolten D (2015) Closing the loop: captured CO2 as a feedstock in the chemical industry. Energy Environ Sci 8(11):3283–3297. doi:10.1039/C5EE02591E

    Article  CAS  Google Scholar 

  10. Fontaine FG, Courtemanche MA, Légaré MA (2014) Transition-metal-free catalytic reduction of carbon dioxide. Chem–Eur J 20(11):2990–2996. doi:10.1002/chem.201304376

  11. Fontaine F-G, Stephan DW (2017) Metal-free reduction of CO2. Curr Opin Green Sustain Chem 3:28–32. doi:10.1016/j.cogsc.2016.11.004

    Article  Google Scholar 

  12. Qiao J, Liu Y, Hong F, Zhang J (2014) A review of catalysts for the electro reduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 43(2):631–675. doi:10.1039/c3cs60323g

    Article  CAS  Google Scholar 

  13. Kondratenko EV, Mul G, Baltrusaitis J, Larrazabal GO, Perez-Ramirez J (2013) Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ Sci 6(11):3112–3135. doi:10.1039/c3ee41272e

    Article  CAS  Google Scholar 

  14. Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev 257(1):171–186. doi:10.1016/j.ccr.2012.04.018

    Article  CAS  Google Scholar 

  15. Grasemann M, Laurenczy G (2012) Formic acid as a hydrogen source—recent developments and future trends. Energy Environ Sci 5(8):8171–8181. doi:10.1039/c2ee21928j

    Article  CAS  Google Scholar 

  16. Dalebrook AF, Gan W, Grasemann M, Moret S, Laurenczy G (2013) Hydrogen storage: beyond conventional methods. Chem Commun 49(78):8735–8751. doi:10.1039/c3cc43836h

    Article  CAS  Google Scholar 

  17. Crabtree GW, Dresselhaus MS, Buchanan MV (2004) The hydrogen economy. Phys Today 57(12):39–44. doi:10.1063/1.1878333

    Article  CAS  Google Scholar 

  18. Jessop PG, Ikariya T, Noyori R (1995) Homogeneous hydrogenation of carbon dioxide. Chem Rev 95(2):259–272. doi:10.1021/cr00034a001

    Article  CAS  Google Scholar 

  19. Kovacs G, Schubert G, Joó F, Papai I (2006) Theoretical investigation of catalytic HCO3 hydrogenation in aqueous solutions. Catal Today 115(1–4):53–60. doi:10.1016/j.cattod.2006.02.018

    Article  CAS  Google Scholar 

  20. Yadav M, Xu Q (2012) Liquid-phase chemical hydrogen storage materials. Energy Environ Sci 5(12):9698–9725. doi:10.1039/c2ee22937d

    Article  CAS  Google Scholar 

  21. Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed 44(18):2636–2639. doi:10.1002/anie.200462121

    Article  CAS  Google Scholar 

  22. Olah GA (2013) Towards oil independence through renewable methanol chemistry. Angew Chem Int Ed 52(1):104–107. doi:10.1002/anie.201204995

    Article  CAS  Google Scholar 

  23. Goeppert A, Czaun M, Jones JP, Surya Prakash GK, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products—closing the loop. Chem Soc Rev 43(23):7995–8048. doi:10.1039/c4cs00122b

    Article  CAS  Google Scholar 

  24. Olah GA, Goeppert A, Prakash GKS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74(2):487–498. doi:10.1021/jo801260f

    Article  CAS  Google Scholar 

  25. Leitner W, Dinjus E, Gassner F (1998) CO2 Chemistry. In: Cornils B, Herrmann WA (eds) Aqueous-phase organometallic catalysis, concepts and applications. Wiley-VCH, Weinheim, pp 486–498

    Google Scholar 

  26. Jessop PG, Joó F, Tai CC (2004) Recent advances in the homogeneous hydrogenation of carbon dioxide. Coord Chem Rev 248(21–24):2425–2442. doi:10.1016/j.ccr.2004.05.019

    Article  CAS  Google Scholar 

  27. Jessop PG (2007) Homogeneous hydrogenation of carbon dioxide. In: De Vries JG, Elsevier CJ (eds) Handbook of homogeneous hydrogenation, vol 1. Wiley-VCH, Weinheim, pp 489–511

    Google Scholar 

  28. Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Mueller TE (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ Sci 5(6):7281–7305. doi:10.1039/c2ee03403d

    Article  CAS  Google Scholar 

  29. Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114(3):1709–1742. doi:10.1021/cr4002758

    Article  CAS  Google Scholar 

  30. Bhanage BM, Arai M (2014) Transformation and utilization of carbon dioxide. Green chemistry and sustainable technology, 1 Edn. Springer-Verlag Berlin Heidelberg. doi:10.1007/978-3-642-44988-8

  31. Dong K, Razzaq R, Hu Y, Ding K (2017) Homogeneous reduction of carbon dioxide with hydrogen. Top Curr Chem 375(2):23. doi:10.1007/s41061-017-0107-x

    Article  Google Scholar 

  32. Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E (2015) CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem Rev 115(23):12936–12973. doi:10.1021/acs.chemrev.5b00197

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Hui Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Wang, WH., Feng, X., Bao, M. (2018). Introduction. In: Transformation of Carbon Dioxide to Formic Acid and Methanol. SpringerBriefs in Molecular Science(). Springer, Singapore. https://doi.org/10.1007/978-981-10-3250-9_1

Download citation

Publish with us

Policies and ethics