Skip to main content

Roles of Runx Genes in Nervous System Development

  • Chapter
  • First Online:
RUNX Proteins in Development and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 962))

Abstract

Runt-related (Runx) transcription factors play essential roles during development and adult tissue homeostasis and are responsible for several human diseases. They regulate a variety of biological mechanisms in numerous cell lineages. Recent years have seen significant progress in our understanding of the functions performed by Runx proteins in the developing and postnatal mammalian nervous system. In both central and peripheral nervous systems, Runx1 and Runx3 display remarkably specific expression in mostly non-overlapping groups of postmitotic neurons. In the central nervous system, Runx1 is involved in the development of selected motor neurons controlling neural circuits mediating vital functions such as chewing, swallowing, breathing, and locomotion. In the peripheral nervous system, Runx1 and Runx3 play essential roles during the development of sensory neurons involved in circuits mediating pain, itch, thermal sensation and sense of relative position. Runx1 and Runx3 orchestrate complex gene expression programs controlling neuronal subtype specification and axonal connectivity. Runx1 is also important in the olfactory system, where it regulates the progenitor-to-neuron transition in undifferentiated neural progenitor cells in the olfactory epithelium as well as the proliferation and developmental maturation of specific glial cells termed olfactory ensheathing cells. Moreover, upregulated Runx expression is associated with brain injury and disease. Increasing knowledge of the functions of Runx proteins in the developing and postnatal nervous system is therefore expected to improve our understanding of nervous system development, homeostasis and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel Samad, O., Liu, Y., Yang, F. C., Kramer, I., Arber, S., & Ma, Q. (2010). Characterization of two Runx1-dependent nociceptor differentiation programs necessary for inflammatory versus neuropathic pain. Molecular Pain, 6, 45.

    PubMed  Google Scholar 

  • Abdo, H., Li, L., Lallemend, F., Bachy, I., Xu, X. J., Rice, F. L., & Ernfors, P. (2011). Dependence on the transcription factor Shox2 for specification of sensory neurons conveying discriminative touch. The European Journal of Neuroscience, 34, 1529–1541.

    Article  PubMed  Google Scholar 

  • Aldes, L. D. (1995). Subcompartmental organization of the ventral (protrusor) compartment in the hypoglossal nucleus of the rat. The Journal of Comparative Neurology, 353, 89–108.

    Article  CAS  PubMed  Google Scholar 

  • Altschuler, S. M., Bao, X., & Miselis, R. R. (1994). Dendritic architecture of hypoglossal motor neurons projecting to extrinsic tongue musculature in the rat. The Journal of Comparative Neurology, 342, 538–550.

    Article  CAS  PubMed  Google Scholar 

  • Benes, F. M., Lim, B., Matzilevich, D., Walsh, J. P., Subbaraju, S., & Minns, M. (2007). Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proceedings of the National Academy of Sciences of the United States of America, 104, 10164–10169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bester, H., Menendez, L., Besson, J. M., & Bernard, J. F. (1995). Spino (trigemino) parabrachiohypothalamic pathway: Electrophysiological evidence for an involvement in pain processes. Journal of Neurophysiology, 73, 568–585.

    CAS  PubMed  Google Scholar 

  • Bester, H., Matsumoto, N., Besson, J. M., & Bernard, J. F. (1997). Further evidence for the involvement of the spinoparabrachial pathway in nociceptive processes: A c-Fos study in the rat. The Journal of Comparative Neurology, 383, 439–458.

    Article  CAS  PubMed  Google Scholar 

  • Buritova, J., Besson, J. M., & Bernard, J. F. (1998). Involvement of the spinoparabrachial pathway in inflammatory nociceptive processes: A c-Fos protein study in the awake rat. The Journal of Comparative Neurology, 397, 10–28.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C. L., Broom, D. C., Liu, Y., de Nooij, J. C., Li, Z., Cen, C., et al. (2006a). Runx1 determines nociceptive sensory neuron phenotype and is required for thermal and neuropathic pain. Neuron, 49, 365–377.

    Article  CAS  PubMed  Google Scholar 

  • Chen, A. I., de Nooij, J. C., & Jessell, T. M. (2006b). Graded activity of transcription factor Runx3 specifies the laminar termination pattern of sensory axons in the developing spinal cord. Neuron, 49, 395–408.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., Wang, J. W., Salin-Cantegrel, A., Dali, R., & Stifani, S. (2015, December 19). Transcriptional regulation of mouse hypoglossal motor neuron somatotopic map formation Brain Structure and Function, 221, 4187–4202. PMID: 26687503.

    Google Scholar 

  • Chibuzo, G. A., & Cummings, J. F. (1982). An enzyme tracer study of the organization of the somatic motor center for the innervation of different muscles of the tongue: Evidence for two sources. The Journal of Comparative Neurology, 205, 273–281.

    Article  CAS  PubMed  Google Scholar 

  • Chou, R. H., Lu, C. Y., Wei-Lee, F. J. R., Yu, Y. L., & Shyu, W. C. (2014). The potential therapeutic applications of olfactory ensheathing cells in regenerative medicine. Cell Transplantation, 23, 567–571.

    Article  PubMed  Google Scholar 

  • Dasen, J. S., Tice, B. C., Brenner-Morton, S., & Jessell, T. M. (2005). A Hox regulatory network establishes motor neuron pool identity and target muscle connectivity. Cell, 123, 477–491.

    Article  CAS  PubMed  Google Scholar 

  • Dasen, J. S., De Camilli, A., Wang, B., Tucker, P. W., & Jessell, T. M. (2008). Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1. Cell, 134, 304–316.

    Article  CAS  PubMed  Google Scholar 

  • Dormand, E. L., & Brand, A. H. (1998). Runt determines cell fates in the Drosophila embryonic CNS. Development, 125, 1659–1667.

    CAS  PubMed  Google Scholar 

  • Duffy, J. B., Kania, M. A., & Gergen, J. P. (1991). Expression and function of the Drosophila gene runt in early stages of neural development. Development, 113, 1223–1230.

    CAS  PubMed  Google Scholar 

  • Dykes, I. M., Lanier, J., Eng, S. R., & Turner, E. E. (2010, January 22). Brn3a regulates neuronal subtype specification in the trigeminal ganglion by promoting Runx expression during sensory differentiation. Neural Development, 5, 3.

    Google Scholar 

  • Dykes, I. M., Tempest, L., Lee, S. I., & Turner, E. E. (2011). Brn3a and Islet1 act epistatically to regulate the gene expression program of sensory differentiation. The Journal of Neuroscience, 31, 9789–9799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gascon, E., Gaillard, S., Malapert, P., Liu, Y., Rodat-Despoix, L., Samokhvalov, I. M., et al. (2010). Hepatocyte growth factor-Met signaling is required for Runx1 extinction and peptidergic differentiation in primary nociceptive neurons. The Journal of Neuroscience, 30, 12414–12423.

    Article  CAS  PubMed  Google Scholar 

  • Gibbs, J., Young, R. C., & Smith, G. P. (1973). Cholecystokinin decreases food intake in rats. Journal of Comparative and Physiological Psychology, 84, 488–495.

    Article  CAS  PubMed  Google Scholar 

  • Gibbs, J., Falasco, J. D., & McHugh, P. R. (1976). Cholecystokinin-decreased food intake in rhesus monkeys. The American Journal of Physiology, 230, 15–18.

    CAS  PubMed  Google Scholar 

  • Ginhoux, F., Greter, M., Leboeuf, M., Nandi, S., See, P., Gokhan, S., et al. (2010). Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science, 330, 841–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guizard, N., Coupé, P., Stifani, N., Stifani, S., & Collins, D.L.. (2010). Robust 3D reconstruction and mean-shift clustering of motoneurons from serial histological images. In Proceedings of 5th international conference on Medical Imaging and Augmented Reality (MIAR) (pp. 191–199). 2010. Springer-Verlag Berlin/Heidelberg.

    Google Scholar 

  • Hermanson, O., Larhammar, D., & Blomqvist, A. (1998). Preprocholecystokinin mRNA-expressing neurons in the rat parabrachial nucleus: Subnuclear localization, efferent projection, and expression of nociceptive-related intracellular signaling substances. The Journal of Comparative Neurology, 400, 255–270.

    Article  CAS  PubMed  Google Scholar 

  • Honma, Y., Kawano, M., Kohsaka, S., & Ogawa, M. (2010). Axonal projections of mechanoreceptive dorsal root ganglion neurons depend on Ret. Development, 137, 2319–2328.

    Article  CAS  PubMed  Google Scholar 

  • Hua, Z. L., Smallwood, P. M., & Nathans, J. (2013). Frizzled3 controls axonal development in distinct populations of cranial and spinal motor neurons. eLife, 2, e01482.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hung, H. A., Sun, G., Keles, S., & Svaren, J. (2015). Dynamic regulation of Schwann cell enhancers after peripheral nerve injury. The Journal of Biological Chemistry, 290, 6937–6950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue, K., Ozaki, S., Shiga, T., Ito, K., Masuda, T., Okado, N., et al. (2002). Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nature Neuroscience, 5, 946–954.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, I. K., Osato, M., Lee, B., Bae, S. C., & Ito, Y. (2007). The transcription factor Runx3 represses the neurotrophin receptor TrkB during lineage commitment of dorsal root ganglion neurons. The Journal of Biological Chemistry, 282, 24175–24184.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, K., Shiga, T., & Ito, Y. (2008). Runx transcription factors in neuronal development. Neural Development, 3, 20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong, J. H., Jin, J. S., Kim, H. N., Kang, S. M., Liu, J. C., Lengner, C. J., et al. (2008). Expression of Runx2 transcription factor in non-skeletal tissues, sperm, and brain. Journal of Cellular Physiology, 217, 511–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kam, J. W., Raja, R., & Cloutier, J. F. (2014). Cellular and molecular mechanisms regulating embryonic neurogenesis in the rodent olfactory epithelium. International Journal of Developmental Neuroscience, 37, 76–86.

    Article  CAS  PubMed  Google Scholar 

  • Kaminker, J. S., Canon, J., Salecker, I., & Banerjee, U. (2002). Control of photoreceptor axon target choice by transcriptional repression of Runt. Nature Neuroscience, 5, 746–750.

    CAS  PubMed  Google Scholar 

  • Kidd, G. J., Ohno, N., & Trapp, B. D. (2013). Biology of Schwann cells. Handbook of Clinical Neurology, 115, 55–79.

    Article  PubMed  Google Scholar 

  • Kramer, I., Sigrist, M., de Nooij, J. C., Taniuchi, I., Jessell, T. M., & Arber, S. (2006). A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron, 49, 379–393.

    Article  CAS  PubMed  Google Scholar 

  • Krammer, E. B., Rath, T., & Lischka, M. F. (1979). Somatotopic organization of the hypoglossal nucleus: A HRP study in the rat. Brain Research, 170, 533–537.

    Article  CAS  PubMed  Google Scholar 

  • Lallemend, F., & Ernfors, P. (2012). Molecular interactions underlying the specification of sensory neurons. Trends in Neurosciences, 35, 373–381.

    Article  CAS  PubMed  Google Scholar 

  • Lallemend, F., Sterzenbach, U., Hadjab-Lallemend, S., Aquino, J. B., Castelo-Branco, G., Sinha, I., et al. (2012). Positional differences of axon growth rates between sensory neurons encoded by Runx3. The EMBO Journal, 31, 3718–3729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leinwand, S. G., & Chalasani, S. H. (2011). Olfactory networks: From sensation to perception. Current Opinion in Genetics & Development, 21, 806–811.

    Article  CAS  Google Scholar 

  • Levanon, D., Brenner, O., Negreanu, V., Bettoun, D., Woolf, E., Eilam, R., et al. (2001). Spatial and temporal expression pattern of Runx3 (Aml2) and Runx1 (Aml1) indicates non-redundant functions during mouse embryogenesis. Mechanisms of Development, 109, 413–417.

    Article  CAS  PubMed  Google Scholar 

  • Levanon, D., Bettoun, D., Harris-Cerruti, C., Woolf, E., Negreanu, V., Eilam, R., et al. (2002). The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. The EMBO Journal, 21, 3454–3463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Zhao, X., Yan, X., Jessen, W. J., Kim, M. O., Dombi, E., Liu, P. P., Huang, G., Wu, J. (2015, June 15). Runx1 contributes to neurofibromatosis type 1 neurofibroma formation. Oncogene, 35, 1468–1474. doi:10.1038/onc.2015.207.

    Google Scholar 

  • Liu, Y., Yang, F., Okuda, T., Dong, X., Zylka, M. J., Chen, C., et al. (2008). Mechanisms of compartmentalized expression of Mrg class G protein-coupled sensory receptors. The Journal of Neuroscience, 28, 125–132.

    Article  CAS  PubMed  Google Scholar 

  • Logan, T. T., Villapol, S., & Symes, A. J. (2013). TGF-β superfamily gene expression and induction of the Runx1 transcription factor in adult neurogenic regions after brain injury. PloS One, 8(3), e59250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logan, T. T., Rusnak, M., & Symes, A. J. (2015). Runx1 promotes proliferation and neuronal differentiation in adult mouse neurosphere cultures. Stem Cell Research, 15, 554–564.

    Article  CAS  PubMed  Google Scholar 

  • Lou, S., Duan, B., Vong, L., Lowell, B. B., & Ma, Q. (2013). Runx1 controls terminal morphology and mechanosensitivity of VGLUT3-expressing C-mechanoreceptors. The Journal of Neuroscience, 33, 870–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou, S., Pan, X., Huang, T., Duan, B., Yang, F. C., Yang, J., et al. (2015). Incoherent feed-forward regulatory loops control segregation of C-mechanoreceptors, nociceptors, and pruriceptors. The Journal of Neuroscience, 35, 5317–5329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, W., Wickramasinghe, S. R., Savitt, J. M., Griffin, J. W., Dawson, T. M., & Ginty, D. D. (2007). A hierarchical NGF signaling cascade controls Ret-dependent and Ret-independent events during development of nonpetidergic DRG neurons. Neuron, 54, 739–754.

    Article  CAS  PubMed  Google Scholar 

  • Malick, A., Jakubowski, M., Elmquist, J. K., Saper, C. B., & Burstein, R. (2001). A neurohistochemical blueprint for pain-induced loss of appetite. Proceedings of the National Academy of Sciences of the United States of America, 98, 9930–9935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marmigere, F., Montelius, A., Wegner, M., Groner, Y., Reichardt, L. F., & Ernfors, P. (2006). The Runx1/AML1 transcription factor selectively regulates development and survival of TrkA nociceptive sensory neurons. Nature Neuroscience, 9, 180–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClung, J. R., & Goldberg, S. J. (1999). Organization of motoneurons in the dorsal hypoglossal nucleus that innervate the retrusor muscles of the tongue in the rat. The Anatomical Record, 254, 222–230.

    Article  CAS  PubMed  Google Scholar 

  • McClung, J. R., & Goldberg, S. J. (2000). Functional anatomy of the hypoglossal innervated muscles of the rat tongue: A model for elongation and protrusion of the mammalian tongue. The Anatomical Record, 260, 378–386.

    Article  CAS  PubMed  Google Scholar 

  • Mueller, W., Nutt, C. L., Ehrich, M., Riemenschneider, M. J., von Deimiling, A., van den Boom, D., & Louis, D. N. (2007). Downregulation of RUNX3 and TES by hypermethylation in glioblastoma. Oncogene, 26, 583–593.

    Article  CAS  PubMed  Google Scholar 

  • Murthy, M., Bocking, S., Verginelli, F., & Stifani, S. (2014). Transcription factor Runx1 inhibits proliferation and promotes developmental maturation in a selected population of inner olfactory nerve layer olfactory ensheathing cells. Gene, 540, 191–200.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, S., Senzaki, K., Yoshikawa, M., Nishimura, M., Inoue, K. I., Ito, Y., et al. (2008). Dynamic regulation of the expression of neurotrophin receptors by Runx3. Development, 135, 1703–17011.

    Article  CAS  PubMed  Google Scholar 

  • Nakazato, R., Takarada, T., Watanabe, T., Nguyen, B. T., Ikeno, S., Hinoi, E., & Yoneda, Y. (2014). Constitutive and functional expression of runt-related transcription factor-2 by microglial cells. Neurochemistry International, 74, 24–35.

    Article  CAS  PubMed  Google Scholar 

  • Nibu, K., Li, G., Kaga, K., & Rothstein, J. L. (2000). bFGF induces differentiation and death of olfactory neuroblastoma cells. Biochemical and Biophysical Research Communications, 279, 172–180.

    Article  CAS  PubMed  Google Scholar 

  • Palmesino, E., Rousso, D. L., Kao, T.-J., Klar, A., Laufer, E., Uemura, O., et al. (2010). Foxp1 and Lhx1 coordinate motor neuron migration with axon trajectory choice by gating reelin signalling. PLoS Biology, 8(8), e1000446.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prinz, M., & Mildner, A. (2011). Microglia in the CNS: Immigrants from another world. Glia, 59, 177–187.

    Article  PubMed  Google Scholar 

  • Ransohoff RM, El Khoury J. 2015. Microglia in health and disease. Cold Spring Harbor Perspectives in Biology, 8(1).

    Google Scholar 

  • Reale, M. E., Webb, I. C., Wang, X., Baltazar, R. M., Coolen, L. M., & Lehman, M. N. (2013). The transcription factor Runx2 is under circadian control in the suprachiasmatic nucleus and functions in the control of rhythmic behavior. PloS One, 8(1), e54317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roet, K. C., & Verhaagen, J. (2014). Understanding the neural repair-promoting properties of olfactory ensheathing cells. Experimental Neurology, 261, 594–609.

    Article  CAS  PubMed  Google Scholar 

  • Rousso, D. L., Gaber, Z. B., Wellik, D., Morrisey, E. E., & Novitch, B. G. (2008). Coordinated actions of the forkhead protein Foxp1 and Hox proteins in the columnar organization of spinal motor neurons. Neuron, 59, 226–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlegelmilch, T., Henke, K., & Peri, F. (2010). Microglia in the developing brain: From immunity to behavior. Current Opinion in Neurobiology, 21, 1–6.

    Google Scholar 

  • Shemer, A., Erny, D., Jung, S., & Prinz, M. (2015). Microglia plasticity during health and disease: An immunological perspective. Trends in Immunology, 36, 614–624.

    Article  CAS  PubMed  Google Scholar 

  • Simeone, A., Daga, A., & Calabi, F. (1995). Expression of runt in the mouse embryo. Developmental Dynamics, 203, 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Stifani, N., Freitas, A. R. O., Liakhovitskaia, A., Medvinsky, A., Kania, A., & Stifani, S. (2008). Suppression of interneuron programs and maintenance of selected spinal motor neuron fates by the transcription factor AML1/Runx1. Proceedings of the National Academy of Sciences of the United States of America, 105, 6451–6456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su, Z., & He, C. (2010). Olfactory ensheathing cells: Biology in neural development and regeneration. Progress in Neurobiology, 92, 517–532.

    Article  PubMed  Google Scholar 

  • Suzuki, J., & Osumi, N. (2015). Neural crest and placode contributions to olfactory development. Current Topics in Developmental Biology, 111, 351–374.

    Article  PubMed  Google Scholar 

  • Takarada, T., & Yoneda, Y. (2009). Transactivation by Runt-related factor-2 of matrix metalloproteinase-13 in astrocytes. Neuroscience Letters, 451, 99–104.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi, H., & Sakano, H. (2014). Neural map formation in the mouse olfactory system. Cellular and Molecular Life Sciences, 71, 3049–3057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theriault, F. M., Roy, P., & Stifani, S. (2004). AML1/Runx1 is important for the development of hindbrain cholinergic branchiovisceral motor neurons and selected cranial sensory neurons. Proceedings of the National Academy of Sciences of the United States of America, 101, 10343–10348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theriault, F. M., Nuthall, H. N., Dong, Z., Lo, R., Barnabe-Heider, F., Miller, F. D., & Stifani, S. (2005). Role for Runx1 in the proliferation and neuronal differentiation of selected progenitor cells in the mammalian nervous system. The Journal of Neuroscience, 25, 2050–2061.

    Article  CAS  PubMed  Google Scholar 

  • Ugarte, G. D., Diaz, E., Biscaia, M., Stehberg, J., Montecino, M., & van Zundert, B. (2013). Transcription of the pain-related TRPV1 gene requires Runx1 and C/EBPβ factors. Journal of Cellular Physiology, 228, 860–870.

    Article  CAS  PubMed  Google Scholar 

  • Vladimirova, V., Waha, A., Luckerath, K., Pesheva, P., & Probmeister, R. (2008). Runx2 is expressed in human glioma cells and mediates the expression of galectin-3. Journal of Neuroscience Research, 86, 2450–2461.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y., Dissing-Olesen, L., MacVicar, B. A., & Stevens, B. (2015). Microglia: Dynamic mediators of synapse development and plasticity. Trends in Immunology, 36(10), 605–613.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, F. C., Tan, T., Huang, T., Christianson, J., Samad, O. A., Liu, Y., et al. (2013). Genetic control of the segregation of pain-related sensory neurons innervating the cutaneous versus deep tissues. Cell Reports, 5, 1353–1364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa, M., Senzaki, K., Yokomizo, T., Takahashi, S., Ozaki, S., & Shiga, T. (2007). Runx1 selectively regulates cell fate specification and axonal projections of dorsal root ganglion neurons. Developmental Biology, 303, 663–674.

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa, M., Murakami, Y., Senzaki, K., Masuda, T., Ozaki, S., Ito, Y., & Shiga, T. (2013). Co-expression of Runx1 and Runx3 in mechanoreceptive dorsal root ganglion neurons. Developmental Neurobiology, 73, 469–479.

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa, M., Hirabayashi, M., Ito, R., Ozaki, S., Aizawa, S., Masuda, T., et al. (2015). Contribution of the Runx1 transcription factor to axonal pathfinding and muscle innervation by hypoglossal motoneurons. Developmental Neurobiology, 75, 1295–1314.

    Article  CAS  PubMed  Google Scholar 

  • Zagami, C. J., & Stifani, S. (2010). Molecular characterization of the mouse superior lateral parabrachial nucleus through expression of the transcription factor Runx1. PloS One, 5(11), e13944.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zusso, M., Methot, L., Lo, R., Grenhalgh, A. D., David, S., & Stifani, S. (2012). Regulation of postnatal forebrain amoeboid microglial cell proliferation and development by the transcription factor Runx1. The Journal of Neuroscience, 32, 11285–11298.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Stifani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wang, J.W., Stifani, S. (2017). Roles of Runx Genes in Nervous System Development. In: Groner, Y., Ito, Y., Liu, P., Neil, J., Speck, N., van Wijnen, A. (eds) RUNX Proteins in Development and Cancer. Advances in Experimental Medicine and Biology, vol 962. Springer, Singapore. https://doi.org/10.1007/978-981-10-3233-2_8

Download citation

Publish with us

Policies and ethics