Skip to main content

RUNX in Invertebrates

  • Chapter
  • First Online:
RUNX Proteins in Development and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 962))

Abstract

Runx genes have been identified in all metazoans and considerable conservation of function observed across a wide range of phyla. Thus, insight gained from studying simple model organisms is invaluable in understanding RUNX biology in higher animals. Consequently, this chapter will focus on the Runx genes in the diploblasts, which includes sea anemones and sponges, as well as the lower triploblasts, including the sea urchin, nematode, planaria and insect. Due to the high degree of functional redundancy amongst vertebrate Runx genes, simpler model organisms with a solo Runx gene, like C. elegans, are invaluable systems in which to probe the molecular basis of RUNX function within a whole organism. Additionally, comparative analyses of Runx sequence and function allows for the development of novel evolutionary insights. Strikingly, recent data has emerged that reveals the presence of a Runx gene in a protist, demonstrating even more widespread occurrence of Runx genes than was previously thought. This review will summarize recent progress in using invertebrate organisms to investigate RUNX function during development and regeneration, highlighting emerging unifying themes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adya, N., Castilla, L. H., & Liu, P. P. (2000). Function of CBFb/Bro proteins. Seminars in Cell and Developmental Biology, 11(5), 361–368.

    Article  CAS  PubMed  Google Scholar 

  • Ahn, M. Y., Huang, G., Bae, S. C., Wee, H. J., Kim, W. Y., & Ito, Y. (1998). Negative regulation of granulocytic differentiation in the myeloid precursor cell line by 32DcI3 by ear-2, a mammalian homolog of Drosophila seven-up, and a chimeric leukemogenic gene, AML1/ETO. PNAS, 95(4), 1812–1817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfonso, T. B., & Jones, B. W. (2002). gcm2 promotes glial cell differentiation and is required with glial cells missing for macrophage development in Drosophila. Developmental Biology, 248(2), 369–383.

    Article  CAS  PubMed  Google Scholar 

  • Bao, R., & Friedrich, M. (2008). Conserved cluster organisation of insect Runx genes. Development Genes and Evolution, 218(10), 567–574.

    Article  PubMed  Google Scholar 

  • Bataille, L., Auge, B., Ferjoux, G., Haenlin, M., & Waltzer, L. (2005). Resolving embryonic blood cell fate choice in Drosophila: Interplay of GCM and RUNX factors. Development, 132, 4635–4644.

    Article  CAS  PubMed  Google Scholar 

  • Baugh, L. R., Demodena, J., & Sternberg, P. W. (2009). RNA Pol II accumulates at promoters of growth genes during developmental arrest. Science, 324(5923), 92–94.

    Article  CAS  PubMed  Google Scholar 

  • Bernardin, F., & Friedman, A. D. (2002). AML1 stimulates G1 to S progression via its transactivation domain. Oncogene, 21(20), 3247–3252.

    Article  CAS  PubMed  Google Scholar 

  • Bernardin-Fried, F., Kummalue, T., Leijen, S., Collector, M. I., Ravid, K., & Friedman, A. D. (2004). AML1/RUNX1 increases during G1 to S cell cycle progression independent of cytokine-dependent phosphorylation and induces cyclin D3 gene expression. Journal of Biological Chemistry, 279(15), 15678–15687.

    Article  CAS  PubMed  Google Scholar 

  • Brabin, C., Appleford, P. J., & Woollard, A. (2011). The Caenorhabditis elegans GATA factor ELT-1 works through the cell proliferation regulator BRO-1 and the fusogen EFF-1 to maintain the seam stem-like fate. PLoS Genetics, 7(8), e1002200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun, T., & Woollard, A. (2009). RUNX factors in development: Lessons from invertebrate model systems. Blood cells, Molecules and Diseases, 43, 43–48.

    Article  CAS  PubMed  Google Scholar 

  • Cai, X., Gao, L., Teng, L., Ge, J., Oo, Z. M., Kumar, A. R., et al. (2015). Runx1 deficiency decrease ribosome biogenesis and confers stress resistance to hematopoietic stem and progenitor cells. Cell Stem Cell, 17(2), 165–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron, E. R., & Neil, J. C. (2004). The Runx genes: Lineage-specific oncogenes and tumor suppressors. Oncogene, 23, 4308–4314.

    Article  CAS  PubMed  Google Scholar 

  • Campos-Ortega, J. A., & Jan, Y. N. (1991). Genetic and molecular bases of neurogenesis in Drosophila melanogaster. Annual Review of Neuroscience, 14, 399–420.

    Article  CAS  PubMed  Google Scholar 

  • Canon, J., & Banerjee, U. (2000). Runt and Lozenge function in Drosophila development. Cell and Developmental Biology, 11, 327–336.

    Article  CAS  Google Scholar 

  • Chang, L. S. H., Ito, K., & Ito, Y. (2013). RUNX family: Regulation and diversification of roles through interacting proteins. International Journal of Cancer, 132, 1260–1271.

    Article  CAS  Google Scholar 

  • Coffman, J. A. (2003). Runx transcription factors and the developmental balance between cell proliferation and differentiation. Cell Biology International, 27, 315–324.

    Article  CAS  PubMed  Google Scholar 

  • Coffman, J. A. (2009). Is Runx a linchpin for developmental signalling in metazoans? Journal of Cellular Biochemistry, 107, 194–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffman, J. A., Kirchhamer, C. V., Harrington, M. G., & Davidson, E. H. (1996). SpRunt-1, a new member of the runt domain family of transcription factors, is a positive regulator of the aboral ectoderm-specific CyIIIA gene in sea urchin embryos. Developmental Biology, 174, 43–54.

    Article  CAS  PubMed  Google Scholar 

  • Coffman, J. A., Dickey-Sims, C., Haug, J. S., McCarthy, J. J., & Robertson, A. J. (2004). Evaluation of developmental phenotypes produced by morpholino antisense targeting of a sea urchin Runx gene. BMC Biology, 2, 6–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crute, B. E., Lewis, A. F., Wu, Z., Bushweller, J. H., & Speck, N. A. (1996). Biochemical and biophysical properties of the core-binding factor alpha2 (AML2) DNA binding domain. Journal of Biological Chemistry, 271, 26251–26260.

    Article  CAS  PubMed  Google Scholar 

  • Daga, A., Karlovich, C. A., Dumstrei, K., & Banerjee, U. (1996). Patterning of cells in the Drosophila eye by Lozenge, which shares homologous domains with AML1. Genes and Development, 10, 1194–1205.

    Article  CAS  PubMed  Google Scholar 

  • Degnan, B. M., Vervoor, M., Larroux, C., & Richards, G. S. (2009). Early evolution of metazoan transcription factors. Current Opinion in Genetics and Development, 19, 591–599.

    Article  CAS  PubMed  Google Scholar 

  • Dickey-Sims, C., Robertson, A. J., Rupp, D. E., McCarthy, J. J., & Coffman, J. A. (2005). Runx-dependent expression of PKC is criticla for cell survival in the sea urchin embryo. BMC Biology, 3, 18–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DuBuc, T. Q., Traylor-Knowles, N., & Martindate, M. Q. (2014). Initiating a regenerative response; cellular and molecular features of wound healing in the cnidarian Nematostella vectensis. BMC Biology, 12, 24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duffy, J. B., & Gergen, J. P. (1991). The Drosophila segmentation gene runt acts as a position-specific numerator element necessary for the uniform expression of the sex-determining gene Sex-lethal. Genes and Development, 5(12A), 2176–2187.

    Article  CAS  PubMed  Google Scholar 

  • Duffy, J. B., Kania, M. A., & Gergen, J. P. (1991). Expression and function of the Drosophila gene runt in early stages of neural development. Development, 114(4), 1223–1230.

    Google Scholar 

  • Durst, K. L., & Hiebert, S. W. (2004). Role of RUNX family members in transcriptional repression and gene silencing. Oncogene, 23, 4220–4224.

    Article  CAS  PubMed  Google Scholar 

  • Eisenhoffer, G. T., Kang, H., & Sanchez-Alvarado, A. (2008). A molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell, 3, 327–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsthoefel, D. J., & Newmark, P. J. (2009). Emerging patterns in planarian regeneration. Current Opinion in Genetics and Development, 19, 412–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajewski, K. M., Sorrentino, R. P., Lee, J. H., Zhang, Q., Russell, M., & Schulz, P. A. (2007). Identification of a crystal cell-specific enhancer of the black cells prophenoloxidase gene in Drosophila. Genesis, 45(4), 200–207.

    Article  CAS  PubMed  Google Scholar 

  • Gergen, J. P., & Butlet, B. A. (1988). Isolation of the Drosophila segmentation gene runt and analysis of its expression during embryogenesis. Genes and Development, 2, 1179–1193.

    Article  CAS  PubMed  Google Scholar 

  • Gergen, J. P., & Wieschaus, E. F. (1985). The localised requirements for a gene affecting segmentation in Drosophila: Analysis of larvae mosaic for runt. Developmental Biology, 109, 321–335.

    Article  CAS  PubMed  Google Scholar 

  • Gleason, J. E., & Eisenmann, D. M. (2010). Wnt signalling controls the stem cell-like asymmetric division of the epithelial seam cells during C. elegans larval development. Developmental Biology, 348(1), 58–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gold, K. S., & Bruckner, K. (2014). Drosophila as a model for the two myeloid blood cell systems in vertebrates. Experimental Hematology, 42, 717–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golling, G., Li, L., Pepling, M., Stebbins, M., & Gergen, J. P. (1996). Drosophila homologs of the proto-oncogene product PEBP2/CBF beta regulate the DNA-binding properties of Runt. Molecular and Cellular Biology, 16(3), 932–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorrepati, L., Krause, M. W., Chen, W., Brodigan, T. M., Correa-Mendez, M., & Eisenmann, D. M. (2015). Identification of Wnt pathway target genes regulating the division and differentiation of larval seam cells and vulval precursor cells in Caenorhabditis elegans. G3, 5, 1551–1566.

    Article  PubMed  PubMed Central  Google Scholar 

  • Govindasamy, N., Murthy, S., & Ghanekar, Y. (2014). Slow-cycling stem cells in hydra contribute to head regeneration. Biology Open, 3, 1236–1244.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harandi, O. F., & Ambros, V. R. (2015). Control of stem cell self-renewal and differentation by the heterochronic genes and the cellular asymmetry machinary in Caenorhabditis elegans. PNAS, 112, E287–E296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes, S., Brabin, C., Appleford, P. J., & Woollard, A. (2013). CEH-20/Pbx and UNC-62/Meis function upstream of rnt-1/Runx to regulate asymmetric divisions of the C. elegans stem-like seam cells. Biology Open, 2(7), 718–727.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inoue, H., Hisamoto, N., An, J. H., Oliveira, R. P., Nishida, E., Blackwell, T. K., & Matsumoto, K. (2005). The C. elegans p38 MAPK pathway regulates nuclear localisation of the transcription factor SKN-1 in oxidative stress response. Genes and Development, 19(19), 2278–27783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, Y. (1999). Molecular basis of tissue-specific gene expression mediated by the Runt domain transcription factor PEBP2/CBF. Genes and Cells, 4, 685–696.

    Article  CAS  Google Scholar 

  • Ito, Y. (2004). Onocgenic potential of the RUNX gene family: ‘Overview’. Oncogene, 23, 4198–4208.

    Article  CAS  PubMed  Google Scholar 

  • Ito, K., Lim, A. C., Salto-Tellez, M., Motoda, L., Osato, M., Chuang, L. S., et al. (2008). RUNX3 attenuates beta-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell, 14(3), 226–237.

    Article  CAS  PubMed  Google Scholar 

  • Ito, K., Chuang, L. S., Ito, T., Chang, T. L., Fukamachi, H., Salto-Tellez, M., & Ito, Y. (2011). Loss of Runx3 is a key event in inducing precancerous state of the stomach. Gasterienterology, 140(5), 1536–1546.

    Article  CAS  Google Scholar 

  • Jung, S. H., Evans, C. J., Uemura, C., & Banerjee, U. (2005). The Drosophila lymph gland as a developmental model of hematopoiesis. Development, 132, 2521–2533.

    Article  CAS  PubMed  Google Scholar 

  • Kagoshima, H., Shigesada, K., Satake, M., Ito, Y., Miyoshi, H., Ohki, M., et al. (1993). The Runt domain identifies a new family of heteromeric transcriptional regulators. Trends in Genetics, 9(10), 338–341.

    Article  CAS  PubMed  Google Scholar 

  • Kagoshima, H., Sawa, S., Mitnai, T. R., Burglin, K., Shigesada, K., & Kohara, Y. (2005). The C. elegans RUNX transcription factor RNT-1/MAB-2 is required for asymmetrical cell division of the T blast cell. Developmental Biology, 287, 262–273.

    Article  CAS  PubMed  Google Scholar 

  • Kagoshima, H., Nimmo, R. A., Saad, N., Tanaka, J., Miwa, Y., Mitani, S., et al. (2007). The C. elegans CBFbeta homologue BRO-1 interacts with the Runx factor, RNT-1, to promote stem cell proliferation and self-renewal. Development, 134(21), 3905–3015.

    Article  CAS  PubMed  Google Scholar 

  • Kahler, R. A., & Westendorf, J. J. (2003). Lymphoid enhancer factor-1 and beta-catenin inhibit Runx2-dependent transcriptional activation of the osteocalcin promoter. Journal of Biological Chemistry, 278(14), 11937–11944.

    Article  CAS  PubMed  Google Scholar 

  • Kamachi, Y., Ogawa, E., Asano, M., Ishida, S., Murakami, Y., Satake, M., et al. (1990). Purification of a mouse nuclear factor that binds to both the A and B cores of the polyomavirus enhancer. Journal of Virology, 64, 4808–4819.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaminker, J. S., Singh, R., Lebestky, T., Yan, H., & Banerjee, U. (2001). Redendant function of Runt domain binding partners, Big Brother and Brother, during Drosophila development. Development, 128(14), 2639–2648.

    CAS  PubMed  Google Scholar 

  • Kania, M. A., Bonner, A. S., Duffy, J. B., & Gergen, J. P. (1990). The Drosophila segmentatio gene runt encodes a novel nuclear regulatory protein that is also expressed in the developing nervous system. Genes and Development, 4(10), 1701–1713.

    Article  CAS  PubMed  Google Scholar 

  • Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple seqeunce alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059–3066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keita, M., Bachvarova, M., Morin, C., Plante, M., Gregoire, J., Renaud, M.-C., et al. (2013). The RUNX1 transcription factor is expresed in serious epithelial ovarina carcinoma and contributes to cell proliferation, migration and invasion. Cell Cycle, 12(6), 972–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitoh, A., Ono, M., Naoe, Y., Ohkura, N., Yamaguchi, T., Yaguchi, H., et al. (2009). Indispensale role of the Runx1-Cbfbeta transcription complex for in vivo-suppressive function of FoxP3+ regulator T cells. Immunity, 31, 609–620.

    Article  CAS  PubMed  Google Scholar 

  • Klinger, M., & Gergen, J. P. (1993). Regulation of runt transcription by Drosophila segmentation genes. Mechanisms of Development, 43, 3–19.

    Article  Google Scholar 

  • Kramer, I., Sigrist, M., de Nooij, J. C., Taniuchi, I., HJessell, T. M., & Arber, S. (2006). A role for Runx transcription factor signalling in dorsal root ganglion sensory neurone diversification. Neurone, 49(3), 379–393.

    Article  CAS  Google Scholar 

  • Lanot, R., Zachary, D., Holder, F., & Meister, M. (2001). Postembryonic hematopoiesis in Drosophila. Developmental Biology, 230(2), 243–257.

    Article  CAS  PubMed  Google Scholar 

  • Lapan, S. W., & Reddien, P. W. (2011). dlx and sp6-9 control optic cup regeneratin in prototypic eye. PLoS Genetics, 7(8), e1002226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebestky, T., Chang, T., Hartenstein, V., & Banerjee, U. (2000). Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science, 288, 146–149.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K., Shim, J., Bae, J., Kim, Y.-J., & Lee, J. (2012). Stabilization of RNT-1 protein, Runt-related transcription factor (RUNX) protein homolog of Caenorhabditis elegans, by oxaditive stress through mitogen-activated protein kinase pathway. Journal of Biological Chemistry, 287(13), 10444–10452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L.-H., & Gergen, J. P. (1999). Differential interactions between Brother proteins and Runt domain proteins in the Drosophila embryo and eye. Development, 126, 3313–3322.

    CAS  PubMed  Google Scholar 

  • Lotem, J., Levanon, D., Negreanu, V., Leshkowitz, D., Friedlander, G., & Groner, Y. (2013). Runx3-mediated transcriptional progeam in cytotoxic lymphocytes. PLoS One, 8(11), e80467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Markus, R., Laurinyecz, B., Kurucz, E., Honti, V., Bajusz, I., Sipos, B., et al. (2009). Sessile hemocytes as a hematopoietic compartment in Drosophila melanogaster. PNAS, 106(12), 4805–4809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milton, C. C., Grusche, F. A., Degoutin, J. L., Yu, E., Dai, Q., Lai, E. C., & Harvey, K. F. (2014). The Hippo pathway regulates hematopoiesis in Drosophila melanogaster. Current Biology, 24, 2673–2680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minokawa, T., Wikramanayake, A. H., & Davidson, E. H. (2005). cis-regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network. Developmental Biology, 288, 545–558.

    Article  CAS  PubMed  Google Scholar 

  • Muratoglu, S., Garratt, G., Hyman, K., Gajewski, K., Schulz, R. A., & Fossett, N. (2006). Regulation of Drosophila friend of GATA gene, u-shaped, during hematopoiesis: a direct role for serpent and lozenge. Developmental Biology, 296, 561–579.

    Article  CAS  PubMed  Google Scholar 

  • Muratoglu, S., Hough, B., Mon, S. T., & Fossett, N. (2007). The GATA factor Serpent cross-regulates lozenge and u-shaped expression during Drosophila blood cell development. Developmental Biology, 311, 636–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murthy, M., Bocking, S., Verginelli, F., & Stifani, S. (2014). Transcription factor Runx1 inhibits proliferation and promotes developmental maturation in a selected population of inner olfactory nerve layer olfactory ensheathing cells. Gene, 540(2), 191–200.

    Article  CAS  PubMed  Google Scholar 

  • Naillat, F., Yan, W., Karjalainen, R., Liakhovitskaia, A., Samoylenko, A., Xu, Q., et al. (2015). Indentification of the gene regulated by Wnt-4, a critical signal for commitment of the ovary. Experimental Cell Research, 332, 163–178.

    Article  CAS  PubMed  Google Scholar 

  • Newmark, P. J., & Sanchez-Alvarado, A. (2002). Not your father’s panarian: a classic model enters the era of functional genomics. Nature Reviews Genetics, 3, 210–219.

    Article  CAS  PubMed  Google Scholar 

  • Nimmo, R. A., & Slack, F. J. (2009). An elegant miRror: microRNAs in stem cells, developmental timing and cancer. Chromosoma, 118, 405–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimmo, R. A., & Woollard, A. (2008). Worming out the biology of Runx. Developmental Biology, 313, 492–500.

    Article  CAS  PubMed  Google Scholar 

  • Nimmo, R. A., Antebi, A., & Woollard, A. (2005). mab-2 encodes RNT-1, a C. elegans Runx homologue essential for controlling cell proliferation in a stem cell-like developmental lineage. Development, 132, 5034–5054.

    Article  CAS  Google Scholar 

  • Nusslein-Volhard, C., & Wieschaus, E. F. (1980). Mutations affecting segment number and polarity in Drosophila. Nature, 287, 795–801.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, E., Maruyama, M., Kagoshima, H., Inuzuka, M., Lu, J., Satake, M., et al. (1993). PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. PNAS, 90, 6859–6863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osoiro, K. M., Lee, S. E., McDermitt, D. J., Waghmare, S. K., Zhang, Y. V., Woo, H. N., & Tumbar, T. (2008). Runx1 mediates developmental, but not injury-driven, hair follicle stem cell activation. Development, 135, 1059–1068.

    Article  CAS  Google Scholar 

  • Pancer, Z., Rast, J. P., & Davidson, E. H. (1999). Origins of immunity: transcription factors and homologues of effector genes of the vertebrate immune system expressed in sea urchin coelomocytes. Immunogenetics, 49, 773–786.

    Article  CAS  PubMed  Google Scholar 

  • Pencovich, N., Jaschek, R., Tanay, A., & Groner, Y. (2011). Dynamic combinatorial interactions of RUNX1 and cooperating partners regulates megakaryocytic differentiation in cell line models. Blood, 117(1), e1–14.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, H. O., Hoger, S. K., Looso, M., Lengfeld, T., Khn, A., Warnken, U., et al. (2015). A comprehensive transcriptomic and proteomic analysis of hydra head regeneration. Molecular Biology and Evolution, 32(8), 1928–1947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddien, P. W., & Sanchez-Alvarado, A. (2004). Fundamentals of planarian regeneration. Annual Review of Cell and Developmental Biology, 20, 725–757.

    Article  CAS  PubMed  Google Scholar 

  • Rennert, J., Coffman, J. A., Mushegian, A. R., & Robertson, A. J. (2003). The evolution of Runx genes I. A comparative study of sequences from phylogenetically diverse model organisms. BMC Evolutionary Biology, 3, 4–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Robertson, A. J., Dickey, C. E., McCarthy, J. J., & Coffman, J. A. (2002). The expression of SpRunt during sea urchin embryogenesis. Mechanisms of Development, 117, 327–330.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, A. J., Coluccio, A., Knowlton, P., Dickey-Sims, C., & Coffman, J. A. (2008). Runx expression is mitogenic and mutually linked to Wnt activity in blastula-stage sea urchin embryos. PLoS One, 3(11), e3770.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robertson, A. J., Larroux, C., Degnan, B. M., & Coffman, J. A. (2009). The evolution of Runx genes II. The C-terminal Groucho recruitment motif is present in both eumetazoans and homoscleromorphs but absent in a haplosclerid demosponge. BMC Research Notes, 2, 59–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robertson, A. J., Coluccio, A., Jensen, S., Rydlizky, K., & Coffman, J. A. (2013). Sea urchin akt activity is Runx-dependent and required for post-cleavage stage cell division. Biology Open, 2, 472–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salo, E., Abril, J. F., Cebria, F., Eckelt, K., Fernandez-Taboada, E., Handberg-Thorsager, M., et al. (2009). Planarian regeneration: achivements and future directions after 20 years of research. International Journal of Developmental Biology, 58(8-10), 1317–1327.

    Article  Google Scholar 

  • Sanchez-Alvarado, A., & Tsonis, P. A. (2006). Bridging the regeneration gap: genetic insights from diverse animal models. Nature Reviews Genetics, 7, 873–884.

    Article  PubMed  CAS  Google Scholar 

  • Sandmann, T., Vogg, M. C., Owlarn, S., Boutros, M., & Bartscherer, K. (2011). The head-regeneration transcriptome of the planarian Schmidtea mediterranea. Genome Biology, 12, R76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schierwater, B., Eitel, M., Jakob, W., Osigus, H.-J., Hadrys, H., Dellaporta, S. L., et al. (2009). Concatenated analysis sheds light on early metazoan evolution and fuels a modern “Urmetazoon” hypothesis. PLoS Biology, 7(1), e1000020.

    Article  PubMed Central  CAS  Google Scholar 

  • Scimone, M. L., Kravarik, K. M., Lapan, S. W., & Reddien, P. W. (2014). Neoblast specialisation in regeneration of the planarian Schmidtea mediterranea. Stem Cell Reports, 3, 339–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebe-Pedros, A., de Mendoza, A., Lang, B. F., Degnan, B. M., & Ruiz-Trillo, L. (2011). Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Molecular Biology and Evolution, 28(3), 1241–1254.

    Article  CAS  PubMed  Google Scholar 

  • Speck, N. A. (2001). Core Binding Factor and its role in normal hematopoietic development. Current Opinion in Hematology, 8(4), 192–196.

    Article  CAS  PubMed  Google Scholar 

  • Strom, D. K., Nip, J., Westendorf, J. J., Linggi, B., Lutterbach, B., Downing, J. R., et al. (2000). Expression of the AML-1 oncogene shortens the G(1) phase of the cell cycle. Journal of Biological Chemistry, 275, 3438–3445.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, J. C., Sher, D., Eisenstein, M., Shigesada, K., Reitzek, A. M., Marlow, H., et al. (2008). The evolutionary origin of the Runx/CBFbeta transcription factors - Studies of the most basal metazoans. BMC Evolutionary Biology, 8, 228–248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sulston, J. E., & Horvitz, H. R. (1977). Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Developmental Biology, 56(1), 110–156.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, T., Tanaka, K., Ogawa, S., Kurokawa, M., Mitani, K., Nishida, J., et al. (1995). An acute myeloid leukemia gene, AML1, regulates hemopoietci myeloid cell differentiation and transcriptional activation antagonistically by two alternative spliced forms. EMBO Journal, 14(2), 341–350.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Theriault, F. M., Nuthall, H. N., Dong, Z., Lo, R., Barnabe-Heider, F., Miller, F. D., & Stifani, S. (2005). Role for Runx1 in the proliferation and neuronal differentation of selected progenitor cells in the mammalian nervous system. Journal of Neuroscience, 25(8), 2050–2061.

    Article  CAS  PubMed  Google Scholar 

  • Voon, D. C., Hor, Y. T., & Ito, Y. (2015). The RUNX complex: Reaching beyond haematopoiesis into immunity. Immunology, 146(4), 523–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner, D. E., Wang, I. E., & Reddien, P. W. (2011). Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science, 332(6031), 811–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waltzer, L., Ferjoux, G., Bataille, L., & Haenlin, M. (2003). Cooperation between the GATA and RUNX factors Serpent and Lozenge during Drosophia hematopoiesis. EMBO Journal, 22(24), 6516–6525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waltzer, L., Gobert, V., Osman, D., & Haenlin, M. (2010). Transcription factor interplay during Drosophila haemoatopoiesis. International Journal of Developmental Biology, 54, 1107–1115.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Kounatidis, I., & Ligoxygakis, P. (2014a). Drosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer. Frontiers in Cellular and Infection Microbiology, 3(113), 1–17.

    Google Scholar 

  • Wang, Y., Godec, J., Ben-Aissa, K., Cui, K., Zhao, K., Pucsek, A. C., et al. (2014b). The transcription factors T-bet and Runx are required for the ontogeny of pathogenic interferon-gamma-producing T helper 17 cells. Immunity, 40(3), 355–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenemoser, D., & Reddien, P. W. (2010). Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Developmental Biology, 344(2), 979–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenemoser, D., Lapan, S. W., Wilkinson, A. W., Bell, G. W., & Reddien, P. W. (2012). A molecular wound response program assocaited with regeneration initation in planarians. Genes and Development, 26, 988–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westendorf, J. J., Zaidi, S. K., Cascino, J. E., Kahler, R., van Wijen, A. J., Lian, J. B., et al. (2002). Runx2 (CbfaI, AML-3) interacts with histone deacetylase 6 and represses the p21 (CIP1/WAF1) promoter. Molecular and Cellular Biology, 22(22), 9782–7992.

    Article  CAS  Google Scholar 

  • Wong, F. W., Kurokawa, M., Satake, M., & Kohu, K. (2011). Down-regulation of Runx1 expression by TCR signal involves an autoregulatory mechanism and contributes to IL-2 production. The Journal of Biological Chemistry, 286(13), 11110–11118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, F. W., Kohu, K., Nakamura, A., Ebina, M., Kikuchi, T., Tazawa, R., et al. (2012). Runx1 deficiency in CD4+ T cells causes fatal autoimmune inflammatory lung disease due to spontaneous hyperactivation of cells. The Journal of Immunology, 188, 5408–5420.

    Article  CAS  PubMed  Google Scholar 

  • Wood, W., & Jacinto, A. (2007). Drosophila melanogaster embryonic haemocytes: masters of multitasking. Nature Reviews Molecular Cell Biology, 8(7), 542–551.

    Article  CAS  PubMed  Google Scholar 

  • Wotton, S., Blyth, K., Kilbey, A., Jenkins, A., Terry, A., Bernardin-Fried, F., et al. (2004). RUNX1 transformation of primary embryonic fibroblasts is revealed in the absence of p53. Oncogene, 23, 5476–5486.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J. Q., Seay, M., Schulz, V. P., Hariharan, M., Tuck, D., Lian, J., et al. (2012). Tcf7 is an important regulator of the switch of self-renewal and differentiation in a multipotential hematopoietic cell line. PLoS Genetics, 8(3), e1002565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurtzel, O., Cote, L. E., Poririer, A., Satjia, R., Regev, A., & Reddien, P. W. (2015). A generic and cell-type specific wound response precedes regeneration in planarians. Developmental Cell, 35, 632–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wysokinski, D., Pawlowska, E., & Blasiak, J. (2015). RUNX2: A master bone growth regulator that may be involved in the DNA damage response. DNA and Cell Biology, 34(5), 305–315.

    Article  CAS  PubMed  Google Scholar 

  • Xia, D., Zhnag, Y., Huang, X., Sun, Y., & Zhnag, H. (2007). The C. elegans CBFbeta homolog, BRO-1, regulates the proliferation, differentation and specification of the stem cell-like seam cell lineages. Developmental Biology, 309(2), 259–272.

    Article  CAS  PubMed  Google Scholar 

  • Yan, H., Canon, J., & Banerjee, U. (2003). A transcriptional chain linking eye specification to terminal determination of cone cells in the Drosophila eye. Developmental Biology, 263, 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Yokomizo, T., Ogawa, M., Osato, M., Kanno, T., Yoshida, H., Fujimoto, T., et al. (2001). Requirement of Runx1/AML1/PEBP2alphaB for the generation of haematopoietic cells from endothelial cells. Genes and Cells, 6(1), 13–23.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Woollard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Hughes, S., Woollard, A. (2017). RUNX in Invertebrates. In: Groner, Y., Ito, Y., Liu, P., Neil, J., Speck, N., van Wijnen, A. (eds) RUNX Proteins in Development and Cancer. Advances in Experimental Medicine and Biology, vol 962. Springer, Singapore. https://doi.org/10.1007/978-981-10-3233-2_1

Download citation

Publish with us

Policies and ethics