Skip to main content

Roles of RUNX in Solid Tumors

  • Chapter
  • First Online:
RUNX Proteins in Development and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 962))

Abstract

All RUNX genes have been implicated in the development of solid tumors, but the role each RUNX gene plays in the different tumor types is complicated by multiple interactions with major signaling pathways and tumor heterogeneity. Moreover, for a given tissue type, the specific role of each RUNX protein is distinct at different stages of differentiation. A regulatory function for RUNX in tissue stem cells points sharply to a causal effect in tumorigenesis. Understanding how RUNX dysregulation in cancer impinges on normal biological processes is important for identifying the molecular mechanisms that lead to malignancy. It will also indicate whether restoration of proper RUNX function to redirect cell fate is a feasible treatment for cancer. With the recent advances in RUNX research, it is time to revisit the many mechanisms/pathways that RUNX engage to regulate cell fate and decide whether cells proliferate, differentiate or die.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akech, J., Wixted, J. J., Bedard, K., van der Deen, M., Hussain, S., Guise, T. A., et al. (2010). Runx2 association with progression of prostate cancer in patients: Mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene, 29, 811–821.

    Article  CAS  PubMed  Google Scholar 

  • Banerji, S., Cibulskis, K., Rangel-Escareno, C., Brown, K. K., Carter, S. L., Frederick, A. M., et al. (2012). Sequence analysis of mutations and translocations across breast cancer subtypes. Nature, 486, 405–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Ami, O., Friedman, D., Leshkowitz, D., Goldenberg, D., Orlovsky, K., Pencovich, N., et al. (2013). Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1. Cell Reports, 4, 1131–1143.

    Article  CAS  PubMed  Google Scholar 

  • Bravo, J., Li, Z., Speck, N. A., & Warren, A. J. (2001). The leukemia-associated AML1 (Runx1) – CBF beta complex functions as a DNA-induced molecular clamp. Nature Structural Biology, 8, 371–378.

    Article  CAS  PubMed  Google Scholar 

  • Brenner, O., Levanon, D., Negreanu, V., Golubkov, O., Fainaru, O., Woolf, E., & Groner, Y. (2004). Loss of Runx3 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia. Proceedings of the National Academy of Sciences of the United States of America, 101, 16016–16021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchert, M., Darido, C., Lagerqvist, E., Sedello, A., Cazevieille, C., Buchholz, F., et al. (2009). The symplekin/ZONAB complex inhibits intestinal cell differentiation by the repression of AML1/Runx1. Gastroenterology, 137, 156–164 164 e151-153.

    Article  CAS  PubMed  Google Scholar 

  • Cancer Genome Atlas Research N. (2014). Comprehensive molecular characterization of gastric adenocarcinoma. Nature, 513, 202–209.

    Article  Google Scholar 

  • Chi, X. Z., Yang, J. O., Lee, K. Y., Ito, K., Sakakura, C., Li, Q. L., et al. (2005). RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expression in cooperation with transforming growth factor {beta}-activated SMAD. Molecular and Cellular Biology, 25, 8097–8107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang, L. S., & Ito, Y. (2010). RUNX3 is multifunctional in carcinogenesis of multiple solid tumors. Oncogene, 29, 2605–2615.

    Article  CAS  PubMed  Google Scholar 

  • Chuang, L. S., Khor, J. M., Lai, S. K., Garg, S., Krishnan, V., Koh, C. G., et al. (2016). Aurora kinase-induced phosphorylation excludes transcription factor RUNX from the chromatin to facilitate proper mitotic progression. Proceedings of the National Academy of Sciences of the United States of America, 113, 6490–6495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebihara, T., Song, C., Ryu, S. H., Plougastel-Douglas, B., Yang, L., Levanon, D., et al. (2015). Runx3 specifies lineage commitment of innate lymphoid cells. Nature Immunology, 16, 1124–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis, M. J., Ding, L., Shen, D., Luo, J., Suman, V. J., Wallis, J. W., et al. (2012). Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature, 486, 353–360.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari, N., Riggio, A. I., Mason, S., McDonald, L., King, A., Higgins, T., et al. (2015). Runx2 contributes to the regenerative potential of the mammary epithelium. Scientific Reports, 5, 15658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiedler, M., Graeb, M., Mieszczanek, J., Rutherford, T. J., Johnson, C. M., & Bienz, M. (2015). An ancient Pygo-dependent Wnt enhanceosome integrated by Chip/LDB-SSDP. eLife, 4, e09073.

    Article  PubMed Central  Google Scholar 

  • Fijneman, R. J., Anderson, R. A., Richards, E., Liu, J., Tijssen, M., Meijer, G. A., et al. (2012). Runx1 is a tumor suppressor gene in the mouse gastrointestinal tract. Cancer Science, 103, 593–599.

    Article  CAS  PubMed  Google Scholar 

  • Finak, G., Bertos, N., Pepin, F., Sadekova, S., Souleimanova, M., Zhao, H., et al. (2008). Stromal gene expression predicts clinical outcome in breast cancer. Nature Medicine, 14, 518–527.

    Article  CAS  PubMed  Google Scholar 

  • Glotzer, D. J., Zelzer, E., & Olsen, B. R. (2008). Impaired skin and hair follicle development in Runx2 deficient mice. Developmental Biology, 315, 459–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh, Y. M., Cinghu, S., Hong, E. T., Lee, Y. S., Kim, J. H., Jang, J. W., et al. (2010). Src kinase phosphorylates RUNX3 at tyrosine residues and localizes the protein in the cytoplasm. The Journal of Biological Chemistry, 285, 10122–10129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanai, J., Chen, L. F., Kanno, T., Ohtani-Fujita, N., Kim, W. Y., Guo, W. H., et al. (1999). Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Calpha promoter. The Journal of Biological Chemistry, 274, 31577–31582.

    Article  CAS  PubMed  Google Scholar 

  • Henrich, K. O., Schwab, M., & Westermann, F. (2012). 1p36 tumor suppression – a matter of dosage? Cancer Research, 72, 6079–6088.

    Article  CAS  PubMed  Google Scholar 

  • Hoi, C. S., Lee, S. E., Lu, S. Y., McDermitt, D. J., Osorio, K. M., Piskun, C. M., et al. (2010). Runx1 directly promotes proliferation of hair follicle stem cells and epithelial tumor formation in mouse skin. Molecular and Cellular Biology, 30, 2518–2536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hor, Y. T., Voon, D. C., Koo, J. K., Wang, H., Lau, W. M., Ashktorab, H., et al. (2014). A role for RUNX3 in inflammation-induced expression of IL23A in gastric epithelial cells. Cell Reports, 8, 50–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, B., Qu, Z., Ong, C. W., Tsang, Y. H., Xiao, G., Shapiro, D., et al. (2012). RUNX3 acts as a tumor suppressor in breast cancer by targeting estrogen receptor alpha. Oncogene, 31, 527–534.

    Article  CAS  PubMed  Google Scholar 

  • Ito, K., Liu, Q., Salto-Tellez, M., Yano, T., Tada, K., Ida, H., et al. (2005). RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Research, 65, 7743–7750.

    Article  CAS  PubMed  Google Scholar 

  • Ito, K., Lim, A. C., Salto-Tellez, M., Motoda, L., Osato, M., Chuang, L. S., et al. (2008). RUNX3 attenuates beta-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell, 14, 226–237.

    Article  CAS  PubMed  Google Scholar 

  • Ito, K., Chuang, L. S., Ito, T., Chang, T. L., Fukamachi, H., Salto-Tellez, M., & Ito, Y. (2011). Loss of Runx3 is a key event in inducing precancerous state of the stomach. Gastroenterology, 140, 1536–1546 e1538.

    Article  CAS  PubMed  Google Scholar 

  • Ito, Y., Bae, S. C., & Chuang, L. S. (2015). The RUNX family: Developmental regulators in cancer. Nature Reviews Cancer, 15, 81–95.

    Article  CAS  PubMed  Google Scholar 

  • Katayama, Y., Takahashi, M., & Kuwayama, H. (2009). Helicobacter pylori causes runx3 gene methylation and its loss of expression in gastric epithelial cells, which is mediated by nitric oxide produced by macrophages. Biochemical and Biophysical Research Communications, 388, 496–500.

    Article  CAS  PubMed  Google Scholar 

  • Kilbey, A., Blyth, K., Wotton, S., Terry, A., Jenkins, A., Bell, M., et al. (2007). Runx2 disruption promotes immortalization and confers resistance to oncogene-induced senescence in primary murine fibroblasts. Cancer Research, 67, 11263–11271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau, Q. C., Raja, E., Salto-Tellez, M., Liu, Q., Ito, K., Inoue, M., et al. (2006). RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Research, 66, 6512–6520.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C. W., Chuang, L. S., Kimura, S., Lai, S. K., Ong, C. W., Yan, B., et al. (2011). RUNX3 functions as an oncogene in ovarian cancer. Gynecologic Oncology, 122, 410–417.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K., Shim, J., Bae, J., Kim, Y. J., & Lee, J. (2012). Stabilization of RNT-1 protein, runt-related transcription factor (RUNX) protein homolog of Caenorhabditis elegans, by oxidative stress through mitogen-activated protein kinase pathway. The Journal of Biological Chemistry, 287, 10444–10452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, Y. S., Lee, J. W., Jang, J. W., Chi, X. Z., Kim, J. H., Li, Y. H., et al. (2013). Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell, 24, 603–616.

    Article  PubMed  Google Scholar 

  • Levanon, D., Brenner, O., Negreanu, V., Bettoun, D., Woolf, E., Eilam, R., et al. (2001). Spatial and temporal expression pattern of Runx3 (Aml2) and Runx1 (Aml1) indicates non-redundant functions during mouse embryogenesis. Mechanisms of Development, 109, 413–417.

    Article  CAS  PubMed  Google Scholar 

  • Levanon, D., Bettoun, D., Harris-Cerruti, C., Woolf, E., Negreanu, V., Eilam, R., et al. (2002). The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. The EMBO Journal, 21, 3454–3463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levanon, D., Bernstein, Y., Negreanu, V., Bone, K. R., Pozner, A., Eilam, R., et al. (2011). Absence of Runx3 expression in normal gastrointestinal epithelium calls into question its tumour suppressor function. EMBO Molecular Medicine, 3, 593–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Q. L., Ito, K., Sakakura, C., Fukamachi, H., Inoue, K., Chi, X. Z., et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell, 109, 113–124.

    Article  CAS  PubMed  Google Scholar 

  • Lim, J., Duong, T., Do, N., Do, P., Kim, J., Kim, H., et al. (2013). Antitumor activity of cell-permeable RUNX3 protein in gastric cancer cells. Clinical Cancer Research, 19, 680–690.

    Article  CAS  PubMed  Google Scholar 

  • Linggi, B., Muller-Tidow, C., van de Locht, L., Hu, M., Nip, J., Serve, H., et al. (2002). The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nature Medicine, 8, 743–750.

    Article  CAS  PubMed  Google Scholar 

  • Lutterbach, B., Westendorf, J. J., Linggi, B., Isaac, S., Seto, E., & Hiebert, S. W. (2000). A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translocations in acute leukemia. The Journal of Biological Chemistry, 275, 651–656.

    Article  CAS  PubMed  Google Scholar 

  • Martin, J. W., Zielenska, M., Stein, G. S., van Wijnen, A. J., & Squire, J. A. (2011). The Role of RUNX2 in Osteosarcoma Oncogenesis. Sarcoma, 2011, 282745.

    Article  CAS  PubMed  Google Scholar 

  • McDonald, L., Ferrari, N., Terry, A., Bell, M., Mohammed, Z. M., Orange, C., et al. (2014). RUNX2 correlates with subtype-specific breast cancer in a human tissue microarray, and ectopic expression of Runx2 perturbs differentiation in the mouse mammary gland. Disease Models & Mechanisms, 7, 525–534.

    Article  CAS  Google Scholar 

  • Mori, T., Nomoto, S., Koshikawa, K., Fujii, T., Sakai, M., Nishikawa, Y., et al. (2005). Decreased expression and frequent allelic inactivation of the RUNX3 gene at 1p36 in human hepatocellular carcinoma. Liver International, 25, 380–388.

    Article  CAS  PubMed  Google Scholar 

  • Nagahama, Y., Ishimaru, M., Osaki, M., Inoue, T., Maeda, A., Nakada, C., et al. (2008). Apoptotic pathway induced by transduction of RUNX3 in the human gastric carcinoma cell line MKN-1. Cancer Science, 99, 23–30.

    CAS  PubMed  Google Scholar 

  • Nam, S., Jin, Y. H., Li, Q. L., Lee, K. Y., Jeong, G. B., Ito, Y., et al. (2002). Expression pattern, regulation, and biological role of runt domain transcription factor, run, in Caenorhabditis elegans. Molecular and Cellular Biology, 22, 547–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevadunsky, N. S., Barbieri, J. S., Kwong, J., Merritt, M. A., Welch, W. R., Berkowitz, R. S., & Mok, S. C. (2009). RUNX3 protein is overexpressed in human epithelial ovarian cancer. Gynecologic Oncology, 112, 325–330.

    Article  CAS  PubMed  Google Scholar 

  • Newman, D. K. (2001). Microbiology. How bacteria respire minerals. Science, 292, 1312–1313.

    Article  CAS  PubMed  Google Scholar 

  • Nomoto, S., Haruki, N., Tatematsu, Y., Konishi, H., Mitsudomi, T., & Takahashi, T. (2000). Frequent allelic imbalance suggests involvement of a tumor suppressor gene at 1p36 in the pathogenesis of human lung cancers. Genes, Chromosomes & Cancer, 28, 342–346.

    Article  CAS  Google Scholar 

  • Nomoto, S., Kinoshita, T., Mori, T., Kato, K., Sugimoto, H., Kanazumi, N., et al. (2008). Adverse prognosis of epigenetic inactivation in RUNX3 gene at 1p36 in human pancreatic cancer. British Journal of Cancer, 98, 1690–1695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogasawara, N., Tsukamoto, T., Mizoshita, T., Inada, K. I., Ban, H., Kondo, S., et al. (2009). RUNX3 expression correlates with chief cell differentiation in human gastric cancers. Histology and Histopathology, 24, 31–40.

    CAS  PubMed  Google Scholar 

  • Ogawa, E., Maruyama, M., Kagoshima, H., Inuzuka, M., Lu, J., Satake, M., et al. (1993). PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proceedings of the National Academy of Sciences of the United States of America, 90, 6859–6863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa, S., Satake, M., & Ikuta, K. (2008). Physical and functional interactions between STAT5 and Runx transcription factors. Journal of Biochemistry, 143, 695–709.

    Article  CAS  PubMed  Google Scholar 

  • Osorio, K. M., Lee, S. E., McDermitt, D. J., Waghmare, S. K., Zhang, Y. V., Woo, H. N., & Tumbar, T. (2008). Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation. Development, 135, 1059–1068.

    Article  CAS  PubMed  Google Scholar 

  • Owens, T. W., Rogers, R. L., Best, S. A., Ledger, A., Mooney, A. M., Ferguson, A., et al. (2014). Runx2 is a novel regulator of mammary epithelial cell fate in development and breast cancer. Cancer Research, 74, 5277–5286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratap, J., Wixted, J. J., Gaur, T., Zaidi, S. K., Dobson, J., Gokul, K. D., et al. (2008). Runx2 transcriptional activation of Indian Hedgehog and a downstream bone metastatic pathway in breast cancer cells. Cancer Research, 68, 7795–7802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pylayeva-Gupta, Y., Grabocka, E., & Bar-Sagi, D. (2011). RAS oncogenes: Weaving a tumorigenic web. Nature Reviews. Cancer, 11, 761–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao, Y., Lin, S. J., Chen, Y., Voon, D. C., Zhu, F., Chuang, L. S., et al. (2015). RUNX3 is a novel negative regulator of oncogenic TEAD-YAP complex in gastric cancer. Oncogene, 35, 2664.

    Article  PubMed  Google Scholar 

  • Raveh, E., Cohen, S., Levanon, D., Groner, Y., & Gat, U. (2005). Runx3 is involved in hair shape determination. Developmental Dynamics, 233, 1478–1487.

    Article  CAS  PubMed  Google Scholar 

  • Raveh, E., Cohen, S., Levanon, D., Negreanu, V., Groner, Y., & Gat, U. (2006). Dynamic expression of Runx1 in skin affects hair structure. Mechanisms of Development, 123, 842–850.

    Article  CAS  PubMed  Google Scholar 

  • Sadikovic, B., Thorner, P., Chilton-Macneill, S., Martin, J. W., Cervigne, N. K., Squire, J., & Zielenska, M. (2010). Expression analysis of genes associated with human osteosarcoma tumors shows correlation of RUNX2 overexpression with poor response to chemotherapy. BMC Cancer, 10, 202.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salto-Tellez, M., Peh, B. K., Ito, K., Tan, S. H., Chong, P. Y., Han, H. C., et al. (2006). RUNX3 protein is overexpressed in human basal cell carcinomas. Oncogene, 25, 7646–7649.

    Article  CAS  PubMed  Google Scholar 

  • Sase, T., Suzuki, T., Miura, K., Shiiba, K., Sato, I., Nakamura, Y., et al. (2012). Runt-related transcription factor 2 in human colon carcinoma: A potent prognostic factor associated with estrogen receptor. International Journal of Cancer, 131, 2284–2293.

    Article  CAS  PubMed  Google Scholar 

  • Scheitz, C. J., Lee, T. S., McDermitt, D. J., & Tumbar, T. (2012). Defining a tissue stem cell-driven Runx1/Stat3 signalling axis in epithelial cancer. The EMBO Journal, 31, 4124–4139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebe-Pedros, A., de Mendoza, A., Lang, B. F., Degnan, B. M., & Ruiz-Trillo, I. (2011). Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Molecular Biology and Evolution, 28, 1241–1254.

    Article  CAS  PubMed  Google Scholar 

  • Sun, L., Vitolo, M. I., Qiao, M., Anglin, I. E., & Passaniti, A. (2004). Regulation of TGFbeta1-mediated growth inhibition and apoptosis by RUNX2 isoforms in endothelial cells. Oncogene, 23, 4722–4734.

    Article  CAS  PubMed  Google Scholar 

  • Tahirov, T. H., Inoue-Bungo, T., Morii, H., Fujikawa, A., Sasaki, M., Kimura, K., et al. (2001). Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell, 104, 755–767.

    Article  CAS  PubMed  Google Scholar 

  • Usui, T., Aoyagi, K., Saeki, N., Nakanishi, Y., Kanai, Y., Ohki, M., et al. (2006). Expression status of RUNX1/AML1 in normal gastric epithelium and its mutational analysis in microdissected gastric cancer cells. International Journal of Oncology, 29, 779–784.

    CAS  PubMed  Google Scholar 

  • van Bragt, M. P., Hu, X., Xie, Y., & Li, Z. (2014). RUNX1, a transcription factor mutated in breast cancer, controls the fate of ER-positive mammary luminal cells. eLife, 3, e03881.

    PubMed  PubMed Central  Google Scholar 

  • Voon, D. C., Wang, H., Koo, J. K., Nguyen, T. A., Hor, Y. T., Chu, Y. S., et al. (2012). Runx3 protects gastric epithelial cells against epithelial-mesenchymal transition-induced cellular plasticity and tumorigenicity. Stem Cells, 30, 2088–2099.

    Article  CAS  PubMed  Google Scholar 

  • Wai, P. Y., Mi, Z., Gao, C., Guo, H., Marroquin, C., & Kuo, P. C. (2006). Ets-1 and runx2 regulate transcription of a metastatic gene, osteopontin, in murine colorectal cancer cells. The Journal of Biological Chemistry, 281, 18973–18982.

    Article  CAS  PubMed  Google Scholar 

  • Wang, C. Q., Krishnan, V., Tay, L. S., Chin, D. W., Koh, C. P., Chooi, J. Y., et al. (2014). Disruption of Runx1 and Runx3 leads to bone marrow failure and leukemia predisposition due to transcriptional and DNA repair defects. Cell Reports, 8, 767–782.

    Article  CAS  PubMed  Google Scholar 

  • Weis, V. G., & Goldenring, J. R. (2009). Current understanding of SPEM and its standing in the preneoplastic process. Gastric Cancer, 12, 189–197.

    Article  PubMed  Google Scholar 

  • Weisenberger, D. J., Siegmund, K. D., Campan, M., Young, J., Long, T. I., Faasse, M. A., et al. (2006). CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nature Genetics, 38, 787–793.

    Article  CAS  PubMed  Google Scholar 

  • Whittle, M. C., Izeradjene, K., Rani, P. G., Feng, L., Carlson, M. A., DelGiorno, K. E., et al. (2015). RUNX3 controls a metastatic switch in pancreatic ductal adenocarcinoma. Cell, 161, 1345–1360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolyniec, K., Wotton, S., Kilbey, A., Jenkins, A., Terry, A., Peters, G., et al. (2009). RUNX1 and its fusion oncoprotein derivative, RUNX1-ETO, induce senescence-like growth arrest independently of replicative stress. Oncogene, 28, 2502–2512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada, C., Ozaki, T., Ando, K., Suenaga, Y., Inoue, K., Ito, Y., et al. (2010). RUNX3 modulates DNA damage-mediated phosphorylation of tumor suppressor p53 at Ser-15 and acts as a co-activator for p53. The Journal of Biological Chemistry, 285, 16693–16703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano, T., Ito, K., Fukamachi, H., Chi, X. Z., Wee, H. J., Inoue, K., et al. (2006). The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells undergoing transforming growth factor beta-induced apoptosis. Molecular and Cellular Biology, 26, 4474–4488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida, C. A., Yamamoto, H., Fujita, T., Furuichi, T., Ito, K., Inoue, K., et al. (2004). Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes & Development, 18, 952–963.

    Article  CAS  Google Scholar 

  • Young, D. W., Hassan, M. Q., Pratap, J., Galindo, M., Zaidi, S. K., Lee, S. H., et al. (2007a). Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2. Nature, 445, 442–446.

    Article  CAS  PubMed  Google Scholar 

  • Young, D. W., Hassan, M. Q., Yang, X. Q., Galindo, M., Javed, A., Zaidi, S. K., et al. (2007b). Mitotic retention of gene expression patterns by the cell fate-determining transcription factor Runx2. Proceedings of the National Academy of Sciences of the United States of America, 104, 3189–3194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, F., Gao, W., Yokochi, T., Suenaga, Y., Ando, K., Ohira, M., et al. (2013). RUNX3 interacts with MYCN and facilitates protein degradation in neuroblastoma. Oncogene, 33, 2601.

    Article  PubMed  Google Scholar 

  • Zhang, X., Akech, J., Browne, G., Russell, S., Wixted, J. J., Stein, J. L., et al. (2015). Runx2-Smad signaling impacts the progression of tumor-induced bone disease. International Journal of Cancer, 136, 1321–1332.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, H., Mak, W., Zheng, Y., Dunstan, C. R., & Seibel, M. J. (2008). Osteoblasts directly control lineage commitment of mesenchymal progenitor cells through Wnt signaling. The Journal of Biological Chemistry, 283, 1936–1945.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation Singapore, and the Singapore Ministry of Education under its Research Centres of Excellence initiative and also by the Singapore National Research Foundation under its Translational and Clinical Research Flagship Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Ito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chuang, L.S.H., Ito, K., Ito, Y. (2017). Roles of RUNX in Solid Tumors. In: Groner, Y., Ito, Y., Liu, P., Neil, J., Speck, N., van Wijnen, A. (eds) RUNX Proteins in Development and Cancer. Advances in Experimental Medicine and Biology, vol 962. Springer, Singapore. https://doi.org/10.1007/978-981-10-3233-2_19

Download citation

Publish with us

Policies and ethics