Skip to main content

Iron-Catalyzed Directed C(sp2)–H Bond Functionalization with Organoboron Compounds

  • Chapter
  • First Online:
New Carbon–Carbon Coupling Reactions Based on Decarboxylation and Iron-Catalyzed C–H Activation

Part of the book series: Springer Theses ((Springer Theses))

  • 703 Accesses

Abstract

Iron, the most abundant transition metal on earth, has so far not received enough attention in catalytic organic synthesis because the catalytic activity of organoiron species is often difficult to control, resulting in narrow applicability. We report here that an iron-catalyzed C–H functionalization reaction allows the coupling of a wide variety of combinations of aromatic, heteroaromatic and olefinic substrates, and alkenyl, alkyl and aryl boron compounds among the reactions catalyzed by precious metals such as palladium. We rationalize these results by the involvement of an organoiron(III) reactive intermediate that is responsible for the C–H bond activation process, and a metal-to-ligand charge transfer that enables smooth catalytic turnover via an iron(I) intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Handbook of C–H Transformations: Applications in Organic Synthesis, Dyker, G., Eds. (Wiley-VCH, Weinheim, 2005).

    Google Scholar 

  2. Sun, C.-L., Li, B.-J., & Shi, Z.-J. (2010). Chemical Communications. 46, 677–685, and references therein.

    Google Scholar 

  3. Nishikata, T., Abela, A. R., Huang, S., & Lipshutz, B. H. (2010). European Journal of Organic Chemistry, 132, 4978–497.

    Google Scholar 

  4. Wasa, M., Chan, K. S. L., & Yu, J.-Q. (2011). Chemistry Letters, 40, 1004–1006.

    Google Scholar 

  5. Engle, K. M., Thuy-Boun, P. S., Dang, M., & Yu, J.-Q. (2011). Journal of the American Chemical Society, 133, 18183–18193.

    Google Scholar 

  6. Tredwell, M. J., Gulias, M., Gaunt Bremeyer, N., Johansson, C. C. C., & Collins, B. S. L. et al., (2011). Angewandte Chemie International Edition, 50, 1076–1079.

    Google Scholar 

  7. Thuy-Boun, P. S., Villa, G., Dang, D., Richardson, P., & Su, S. et al. (2013). Journal of the American Chemical Society, 135, 17508–17513.

    Google Scholar 

  8. Ueno, S., Chatani, N., & Kakiuchi, F. (2007). Journal of Organic Chemistry, 72, 3600–3602.

    Google Scholar 

  9. Chinnagolla, R. K., & Jeganmohan, M. (2012). Organic Letters, 14, 5246–5249.

    Google Scholar 

  10. Vogler, T., & Studer, A. (2008). Organic Letters, 10, 129–131.

    Google Scholar 

  11. Karthikeyan, J., Haridharan, R., & Cheng, C.-H. (2012). Angewandte Chemie International Edition, 51, 12343–12347.

    Google Scholar 

  12. Waterman, R. (2013). Organometallics, 32, 7249–7263.

    Google Scholar 

  13. Iron Catalysis in Organic Chemistry, Plietker, B., Eds. (Wiley-VCH, Weinheim, 2008).

    Google Scholar 

  14. Nakamura, E., & Yoshikai, N. (2010). Journal of Organic Chemistry, 75, 6061–6067.

    Google Scholar 

  15. Sun, C.-L., Li, B.-J., & Shi, Z.-J. (2011). Chemical Reviews, 111, 1293–1314.

    Google Scholar 

  16. The Chemistry of Organoiron Compounds, Marek, I., Rappoport, Z., Eds. (John Wiley & Sons, Ltd., Chichester, UK, 2014).

    Google Scholar 

  17. Nakamura, E., Hatakeyama, T., Ito, S., Ishizuka, K., & Ilies, L., et al., Organic Reactions, S. E. Denmark, Ed. (John Wiley & Sons, 2014), vol. 83.

    Google Scholar 

  18. Nakamura, E., & Sato, K. (2011). Nature Material, 10, 158–161.

    Google Scholar 

  19. Tolman, C. A., Ittel, S. D., English, A. D., & Jesson, J. P. (1978). Journal of the American Chemical Society, 100, 4080–4089.

    Google Scholar 

  20. Klein, H.-F., Camadanli, S., Beck, R., Leukel, D., & Flörke, U. (2005). Angewandte Chemie International Edition, 44, 975–977.

    Google Scholar 

  21. Camadanli, S., Beck, R., Flörke, U., & Klein, H.-F. (2009). Organometallics, 28, 2300–2310.

    Google Scholar 

  22. Bedford, R. B., Hall, M. A., Hodges, G. R., Huwe, M., & Wilkinson, M. C. (2009). Chemistry Communications, 6430–6432.

    Google Scholar 

  23. Kobayashi, Y., & Mizojiri, R. (1996). Tetrahedron Letters, 37, 8531–8534.

    Google Scholar 

  24. Norinder, J., Matsumoto, A., Yoshikai, N., & Nakamura, E. (2008). Journal of the American Chemical Society, 130, 5858–5859.

    Google Scholar 

  25. Yoshikai, N., Matsumoto, A., Norinder, J., & Nakamura, E. (2009). Angewandte Chemie International Edition, 48, 2925–2928.

    Google Scholar 

  26. Ilies, L., Asako, S., & Nakamura, E. (2011). Journal of the American Chemical Society, 133, 7672–7675.

    Google Scholar 

  27. Asako, S., Ilies, L., & Nakamura, E. (2013). Journal of the American Chemical Society, 135, 17755–17757.

    Google Scholar 

  28. Matsubara, T., Asako, S., Ilies, L., & Nakamura, E. (2014). Journal of the American Chemical Society, 136, 646–649.

    Google Scholar 

  29. Valio, I. F. M., Burdon, R. S., & Schwabe, W. W. (1969). Nature, 223, 1176–1178.

    Google Scholar 

  30. A Mg(II) salt under similar conditions did not effect the transmetalation: Hatakeyama, T., Hashimoto, T., Kondo, Y., Fujiwara, Y., & Seike, H. et al., (2010). Journal of the American Chemical Society, 132, 10674–10676.

    Google Scholar 

  31. Bedford, R. B., Gower, N. J., Haddow, M. F., Harvey, J. N., & Nunn, J. et al., (2012). Angewandte Chemie International Edition, 51, 5435–5438.

    Google Scholar 

  32. Zaitsev, V. G., Shabashov, D., & Daugulis, O. (2005). Journal of the American Chemical Society, 127, 13154–13155.

    Google Scholar 

  33. Rouquet, G., & Chatani, N. (2013). Angewandte Chemie International Edition, 52, 11726–11743.

    Google Scholar 

  34. Shang, R., Ilies, L., Matsumoto, A., & Nakamura, E. (2013). Journal of the American Chemical Society, 135, 6030–6032.

    Google Scholar 

  35. Webster, C. E., Fan, Y., Hall, M. B., Kunz, D., & Hartwig, J. F. (2003). Journal of the American Chemical Society, 125, 858–859.

    Google Scholar 

  36. Vastine, B. A., & Hall, M. B. (2007). Journal of the American Chemical Society, 129, 12068–12069.

    Google Scholar 

  37. “The Nobel Prize in Chemistry 2010”, Nobelprize.org.

    Google Scholar 

  38. Blanchard, S., Derat, E., Desage-El Murr, M., Fensterbank, L., & Malacria, M. et al., Eur. J. (2012). Inorganic Chemistry, 376–389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Shang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Shang, R. (2017). Iron-Catalyzed Directed C(sp2)–H Bond Functionalization with Organoboron Compounds. In: New Carbon–Carbon Coupling Reactions Based on Decarboxylation and Iron-Catalyzed C–H Activation. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-3193-9_11

Download citation

Publish with us

Policies and ethics