Spatial and Temporal Distribution of Storms in Central Asia and Kazakhstan

  • Gulnura IssanovaEmail author
  • Jilili Abuduwaili
Part of the Environmental Science and Engineering book series (ESE)


Due to the vast and diverse desert types across Central Asia and Kazakhstan, dust storms vary by frequency, duration, and intensity.


Dust Storm Dust Deposition Siberian High Desert Zone Critical Wind Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aizen VB, Aizen EM, Melack JM, Dozier J (1997) Climatic and hydrologic changes in the Tien Shan Central Asia. J Clim 10:1393–1404CrossRefGoogle Scholar
  2. Aizen EM, Aizen VB, Melack JM, Nakamura T, Ohta T (2001) Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. Int J Climatol 21:535–556CrossRefGoogle Scholar
  3. Almaganbetov N, Grigoruk V (2008) Degradation of soil in Kazakhstan: problems and challenges. Soil chemical pollution, risk assessment, remediation and security, pp 309–320Google Scholar
  4. Asian Development Bank (ADB) (2003) TA No 3898-KAZ “Participatory Rural Sector Planning and Development”, Feb 2003Google Scholar
  5. Bennion P et al (2007) The impact of airborne dust on respiratory health in children living in the Aral Sea region. Int J Epidemiol 36:1103–1110Google Scholar
  6. Bingyi W, Jia W (2002) Possible impacts of winter Arctic oscillation on Siberian High, the East Asian winter monsoon and sea-ice extent. Adv Atmos Sci 19(2):297–320CrossRefGoogle Scholar
  7. Breckle SW, Wucherer W, Agachanjanz O, Geldyev BV (2001) The Aral Sea crisis region. In: Breckle SW, Veste M, Wucherer W (eds) Sustainable land use in deserts. Springer, Berlin, pp 27–37Google Scholar
  8. Breckle SW (2009) Desertification—a global issue. In: Marburg International Dust and Sand Storm (DSS) Symposium “DSS and Desertification”. Symposium Proceedings. pp 16–19Google Scholar
  9. Chen F, Yu Z, Yang M, Ito E, Wang S, Madsen DB, Huang X, Zhao Y, Sato T, Birks HJB, Boomer I, Chen J, Chengbang A, Wьnnemann B (2008) Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history. Quarternary Sci Rev 27:351–364CrossRefGoogle Scholar
  10. D’Arrigo R, Jacoby G, Wilson R, Panagiotopoulos F (2005) A reconstructed Siberian High index since A.D. 1599 from Eurasian and North American tree rings. Geophys Res Lett 32:4Google Scholar
  11. Danayev E (2008) Feasibility of wind energy development in Kazakhstan technical-economical analysis of wind farm construction in the Almaty Region. M.Sc. thesis, Energy Systems and the Environment. Strathclyde University, United Kingdom, pp 1–134Google Scholar
  12. Dedova TV, Semenov OF, Tuseeva NB (2006) Division of Kazakhstan territory by the repetition of very strong dust storms and based on meteorological observations, remote sensing images and GIS. In: Iskakov TB, Medeu AR (eds) Republic of Kazakhstan, Environment and Ecology, Almaty (in Russian)Google Scholar
  13. Deser C (2000) On the teleconnectivity of the “Arctic oscillation”. Geophys Res Lett 27:779–782CrossRefGoogle Scholar
  14. Dickson RR, Osborn TJ, Hurrell JW, Meincke J, Blindheim J, Adlandsvik B, Vinje T, Alekseev G, Maslowski W (2000) The Arctic Ocean response to the North Atlantic oscillation. J Clim 13:2671–2696CrossRefGoogle Scholar
  15. Druyan LM, Rind D (1993) Implications of climate change on a regional scale. In: Graber M, Cohen A, Magaritz M (eds) Proceedings of the international workshop on regional implications of future climate change, Israel Academy of Sciences and, Humanities, vol 311, pp 75–78Google Scholar
  16. Duan AM, Wu GX (2005) Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Clim Dyn 24:793–807CrossRefGoogle Scholar
  17. Dzhanalieva KM, Budnikova TI, Vilesov EN (1998) Physical geography of Kazakhstan. Kazak Universiteti, Almaty, p 266 (in Russian)Google Scholar
  18. Ekström M, McTainsh GH, Chappell A (2004) Australian dust storms: temporal trends and relationships with synoptic pressure distributions (1960–99), Int J Climatol 24:1581–1599Google Scholar
  19. Galaeva OS, Idrysova VP (2007) Climatic characteristics of dust storms in Circum-Aral region. Hydrometeorology Ecol 2:27–39 (in Russian)Google Scholar
  20. Gong DY, Ho CH (2002) The Siberian High and climate change over middle to high latitude Asia. Theoret Appl Climatol 72:1–9CrossRefGoogle Scholar
  21. Goudie AS (1983) Dust storms in space and time. Progr Phys Geogr 7:502–530Google Scholar
  22. Goudie AS, Middleton NJ (1992) The changing frequency of dust storms through time. Clim Change 20:192–225CrossRefGoogle Scholar
  23. Goudie AS, Middleton NJ (2006) Desert dust in the global system. Springer, p 287Google Scholar
  24. Grigoryev AA, Kondratyev KJ (1981) Atmospheric dust observed from space, part 2. WMO Bull vol 30(1):3–11 (in Russian)Google Scholar
  25. Groll M, Opp C, Aslanov I (2012) Spatial and temporal distribution of the dust deposition in Central Asia—results from a long term monitoring data. J Aeolian Res. doi:
  26. Guo ZT, Ruddiman WF, Hao QZ, Wu HB, Qiao YS, Zhu RX, Peng SZ, Wei JJ, Yuan BY, Liu TS (2002) Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416:159–163CrossRefGoogle Scholar
  27. Han Y, Fang X, Kang S, Wang H, Kang F (2008) Shifts of dust source regions over Central Asia and the Tibetan Plateau—connections with the Arctic oscillation and the Westerly jet. Atmos Environ 42:2358–2368CrossRefGoogle Scholar
  28. Huang X, Oberhдnsli H, Suchodoletz HV, Sorrel P (2011) Dust deposition in the Aral Sea—implications for changes in atmospheric circulation in Central Asia during the past 2000 years. Quatern Sci Rev 30(25–26):3661–3674CrossRefGoogle Scholar
  29. Hurrell JW (1995) Decadal trends in the North Atlantic oscillation—regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  30. Indoitu R, Orlovsky L, Orlovsky N (2009) Dust storms in Central Asia: spatial and temporal variations. Marburg International Dust and Sand Storm (DSS) Symposium “DSS and Desertification”. Symposium Proceedings pp 28–29Google Scholar
  31. Indoitu R, Orlovsky L, Orlovsky N (2012) Dust storms in Central Asia—spatial and temporal variations. J Arid Environ 85:62–70CrossRefGoogle Scholar
  32. Iskakov NA, Medeu AR (2006) Republic of Kazakhstan, part 3. Environment and ecology. Almaty, p 289 (in Russian)Google Scholar
  33. Kang S, Mayewski PA, Yan Y, Qin D, Yao T, Ren J (2003) Dust records from three ice cores—relationships to spring atmospheric circulation over the Northern Hemisphere. Atmos Environ 37:4823–4835CrossRefGoogle Scholar
  34. Klimenko LV, Moskaleva LA (1979) Frequency of occurrence of dust storms in the USSR. Meteorol Gidrol 9:93–97Google Scholar
  35. Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing—the role of the Tibetan plateau. Clim Dyn 26:855–864CrossRefGoogle Scholar
  36. Létolle R, Martin J, Thomas A, Gordeev V, Gusarova S, Sidorov I (1993) Abundance and dissolved silicate in the Lena delta and Laptev Sea (Russia), Mar Chem 43:47–64Google Scholar
  37. Li J, Yu R, Zhou T (2008) Teleconnection between NAO and climate downstream of the Tibetan plateau. J Clim 21:4680–4690CrossRefGoogle Scholar
  38. Lioubimtseva E, Cole R, Adams JM et al (2005) Impacts of climate and land-cover changes in arid lands of Central Asia. J Arid Environ 62:285–308CrossRefGoogle Scholar
  39. Littmann T (2006) Dust storms in Asia. Geographische Rundschau International Edition. 2:8–12Google Scholar
  40. Medeu AR (eds.) (2010) Republic of Kazakhstan, vol 1. Natural Settings and Natural Resources. Almaty, 506 p (in Russian)Google Scholar
  41. Moutaz AA, Mohammed AA, Raad MA (2012) Dust storms loads analyses—Iraq. Arab J Geosci 5:121–131CrossRefGoogle Scholar
  42. National Atlas of Kazakhstan (NAKZ) (2010) Environment and ecology, vol 3 (in Russian)Google Scholar
  43. Ogi M, Tachibana Y, Yamazaki K (2003) Impact of the wintertime North Atlantic oscillation (NAO) on the summertime atmospheric circulation. Geophys Res Lett 30:371–374Google Scholar
  44. Opp C (2007) Vom Aralsee zur Aralkum: Ursachen. Wirkungen und Folgen des Aralsee-Syndroms (“From the Aral Sea to the Aral Kum—causes and consequences of the Aral Sea syndrome”). In: Glaser R, Kremb K (eds) 2007. Asien, Darmstadt, pp 90–100Google Scholar
  45. Orlovsky L, Orlovsky N (2001) White sand storms in Central Asia. Youlin Y, Squired V, Qi l (eds.) (2001). Global Alarm: Dust and sand storms from the World’s Drylands, UNCCD report, Bangkok, vol 325, pp 169–201Google Scholar
  46. Orlovsky L, Orlovsky N, Durdiev A (2005) Dust storms in Turkmenistan. J Arid Environ 60(1):83–97Google Scholar
  47. Orlovsky L, Opp C, Orlovsky N (2009) Dust storms and dust depositions—dynamics, monitoring and case studies from Central Asia. Marburg International Dust and Sand Storm (DSS) Symposium “DSS and Desertification”. Symposium ProceedingsGoogle Scholar
  48. Panagiotopoulos F, Shahgedanova M, Hannachi A, Stephenson DB (2005) Observed trends and teleconnections of the Siberian High—a recently declining center of action. J Clim 18:1411–1422CrossRefGoogle Scholar
  49. Romanov NN (1960) Dust storms in Central Asia, Tashkent, 198 p (in Russian)Google Scholar
  50. Schiemann R (2007) Forcing and variability of the hydroclimate in Central Asia. Dissertation at the ETH Zurich, p 141Google Scholar
  51. Small EE, Giorgi F, Sloan LC (1999) Regional climate model simulation of precipitation in Central Asia—mean and interannual variability. J Geophys Res 104:6563–6582CrossRefGoogle Scholar
  52. Sorrel P (2006) The Aral Sea—a paleoclimate archive, Dissertation at the University of Potsdam and the University of Lyon, pp 109Google Scholar
  53. Squires VR (2001) Dust and sandstorms: an early warning of impending disaster. In: Youlin Y, Squires V, Qi L (eds) Global alarm: Dust and sand storms from the world’s drylands. United Nations, pp 15–25Google Scholar
  54. Suslov SP (1961) Physical geography of Asiatic Russia. Freeman, San FranciscoGoogle Scholar
  55. Uteshev AS (1959) Climate of Kazakhstan. Leningrad, Gidrometeoizdat, 368 p (in Russian)Google Scholar
  56. Weidel H, Dukhovniy VA et al (2004) Economical assessment of joint and local measures for the reduction of socio-economical damage in the coastal zone of Aral Sea. Final Report on INTAS-2001-01059 ProjectGoogle Scholar
  57. Yang X, Scuderi L (2010) Hydrological and climatic changes in deserts of China since the Late Pleistocene. Quat Res 73:1–9CrossRefGoogle Scholar
  58. Zavialov PO (2005) Physical oceanography of the dying Aral Sea. Springer, p 146Google Scholar
  59. Zhu X, Bothe O, Fraedrich K (2011) Summer atmospheric bridging between Europe and East Asia—influences on drought and wetness on the Tibetan Plateau. Quarternary International 236:151–157CrossRefGoogle Scholar
  60. Zolotokrylin AN (1996) Dust storms in Turanian Lowland. Proceedings of Russian Academy of Science Geographic Series 6, pp 48–54 (in Russian)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Research Centre of Ecology and Environment of Central Asia (Almaty)State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqiChina
  2. 2.U.U. Uspanov Kazakh Research Institute of Soil Science and AgrochemistryAlmatyKazakhstan

Personalised recommendations