Skip to main content

Potentialities of Dynamic Breast Thermography

  • Chapter
  • First Online:
Book cover Application of Infrared to Biomedical Sciences

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

Since the introduction of breast thermography into medicine, researchers have been interested in enhancing the thermal contrast in thermograms taken at steady state. It was found that cooling the surface of the skin during long acclimation periods produced better thermal contrast, although it was agreed that acclimation periods of up to 15 min may suffice to reflect functionalities of inner skin tissues. However, the use of artificial sources for cooling the skin has revealed new functional information that complements steady state thermography findings. The method has been referred to as ‘Dynamic thermography ’ and is based on monitoring skin’s thermal state after cold stress. Although dynamic thermography showed some promises in breast cancer diagnosis during the 70s, it has not received much interest till the advent of computer image processing techniques. Analytical tools such as sequential thermography, subtraction thermography, μ-thermography and thermal parametric images have been used in order to increase the accuracy of breast thermography. Other processing techniques used thermal transients of control points on the breasts to examine the change in blood perfusion induced by the presence of a breast disease . Autonomic cold challenge has also been used to identify a tumour’s blood vessels. Recent numerical methods have investigated the effectiveness of dynamic breast thermography and revealed new parameters that are strongly correlated with tumour’s depth. Here we review the state of the art in dynamic thermography as it is applied to breast diagnosis and identify some of the potential information that could be provided about breast diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawson, R.: Implications of surface temperatures in the diagnosis of breast cancer. Can. Med. Assoc. J. 75, 309 (1956)

    Google Scholar 

  2. Williams, K.L., Williams, F.L., Handley, R.: Infra-red radiation thermometry in clinical practice. Lancet 276, 958–959 (1960)

    Article  Google Scholar 

  3. Williams, K.L., Williams, F.L., Handley, R.: Infra-red thermometry in the diagnosis of breast disease. Lancet 278, 1378–1381 (1961)

    Article  Google Scholar 

  4. Barnes, R., Gershon-Cohen, J.J.: Clinical thermography. JAMA 185, 949–952 (1963)

    Article  Google Scholar 

  5. Barnes, R.B.: Thermography of the human body. Science (Infrared-radiant energy provides new concepts and instrumentation for medical diagnosis) 140, 870–877 (1963)

    Google Scholar 

  6. Freeman, H., Linder, F.E., Nickerson, R.F.: The bilateral symmetry of skin temperature: one figure. J. Nutr. 13, 39–49 (1937)

    Google Scholar 

  7. Sheard, C., Williams, M.M.D.: Skin temperatures of the extremities and basal metabolic rates in individuals having normal circulation. Proc. Staff Meet. Mayo Clin. 15, 758–762 (1940)

    Google Scholar 

  8. Williams, K.L.: Infrared thermometry as a tool in medical research. Ann. N. Y. Acad. Sci. 121, 99–112 (1964)

    Article  Google Scholar 

  9. Williams, K.L.: Pictorial heat scanning. Phys. Med. Biol. 9, 433 (1964)

    Article  Google Scholar 

  10. Barnes, R.B.: Thermography. Ann. N. Y. Acad. Sci. 121, 34–48 (1964)

    Article  Google Scholar 

  11. Astheimer, R.W., Wormser, E.M.: High-speed infrared radiometers. J. Opt. Soc. Am. 49, 179–183 (1959)

    Article  Google Scholar 

  12. Amalric, D., Giraud, D., Altschule, C., Spitalier, J.: Value and interest of dynamic telethermography in detection of breast cancer. Acta Thermograph 1, 89–96 (1976)

    Google Scholar 

  13. Gautherie, M., Haehnel, P., Walter, J., Keith, L.: Long-term assessment of breast cancer risk by liquid-crystal thermal imaging. Prog. Clin. Biol. Res. 107, 279–301 (1981)

    Google Scholar 

  14. Cockburn, W.: Announcement of Official Change in Thermal Reporting [Online]. Available: http://www.thermologyonline.org/breast/breast_q_a/bqa_coldstress.htm (2005)

  15. Kane, R.L.: Considerations in the Applications of Various Cooling Methods During Breast Thermography Stress Studies [Online]. International Academy of Clinical Thermology. Available: http://www.iact-org.org/articles/articles-considerations.html (2002)

  16. Leando, P.: Cold Stressing Breasts and Why Don’t We Do It Anymore and the Thermal Rating System [Online]. American College of Clinical Thermology. Available: http://acct-blog.com/category/cold-stressing-breast/ (2003)

  17. Amalu, W.C.: Nondestructive testing of the human breast: the validity of dynamic stress testing in medical infrared breast imaging. In: Engineering in Medicine and Biology Society, 2004. IEMBS’04. 26th Annual International Conference of the IEEE, pp. 1174–1177. IEEE (2004)

    Google Scholar 

  18. Nagasawa, A., Okada, H.: Thermal recovery. In: Atsumi, K. (ed.) Medical Thermography. University of Tokyo Press, Tokyo (1973)

    Google Scholar 

  19. Cary, J., Mikic, B.: A thermal analysis of human tissue with applications to thermography. In: 2nd International Symposium on the Detection and Prevention of Cancer, Bologna, Italy (1973)

    Google Scholar 

  20. Cary, J., Kalisher, L., Sadowsky, N., Mikic, B.: Thermal evaluation of breast disease using local cooling 1. Radiology 115, 73–77 (1975)

    Article  Google Scholar 

  21. Steketee, J.: Thermografie van het voorhoofd. Jubilee edition of reports. Erasmus University, Rotterdam (1978)

    Google Scholar 

  22. Steketee, J., Van der Hoek, M.: Thermal recovery of the skin after cooling. Phys. Med. Biol. 24, 583 (1979)

    Article  Google Scholar 

  23. Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1, 93–122 (1948)

    Google Scholar 

  24. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Clarendon Press, Oxford (1959)

    Google Scholar 

  25. Spiegel, M.: Schaum’s Outline of Laplace Transforms. McGraw-Hill Education (1965)

    Google Scholar 

  26. Newman, P., Evans, A.L., Davison, M., Jackson, I., James, W.B.: A system for the automated diagnosis of abnormality in breast thermograms. Br. J. Radiol. 50, 231–232 (1977)

    Article  Google Scholar 

  27. Uchida, I., Onai, Y., Ohashi, Y., Tomaru, T., Irifune, T.: quantitative diagnosis of breast thermograms by a computer. J. Jpn Radiol. Soc. Radiol. 39, 401–411 (1979)

    Google Scholar 

  28. Winter, J., Stein, M.A.: Computer image processing techniques for automated breast thermogram interpretation. Comput. Biomed. Res. 6, 522–529 (1973)

    Article  Google Scholar 

  29. Ziskln, M.C., Negin, M., Piner, C., Lapayowker, M.S.: Computer diagnosis of breast thermograms. Radiology 115, 341–347 (1975)

    Article  Google Scholar 

  30. Geser, H., Bosinger, P., Stucki, D., Landolt, C.: Computer-assisted dynamic breast thermography. Thermology 2, 538–544 (1987)

    Google Scholar 

  31. Usuki, H., Teramoto, S., Komatsubara, S., Hirai, S., Misumi, T., Murakami, M., Onoda, Y., Kawashima, K., Kino, K., Yamashita, K.: Advantages of subtraction thermography in the diagnosis of breast disease. Biomed. Thermol. 11, 286–291 (1991)

    Google Scholar 

  32. Uchida, I., Ohashi, Y., Onai, Y., Yamada, Y., Tomaru, T.: Quantitative analysis of sequential thermograms 1. In: Development of a Physiological Functional Image Processing System for Dynamic Thermography after Cooling (1988)

    Google Scholar 

  33. Uchida, I., Ohashi, Y., Sato, Y., Yamada, Y., Oyamada, H., Tomaru, T., Onai, Y., Ito, A.: Effectiveness of pathophysiological functional thermal images in the diagnosis of breast thermography. Jpn Radiol. Phys. 10, 101–106 (1990)

    Google Scholar 

  34. Ohashi, Y., Uchida, I.: Some considerations on the diagnosis of breast cancer by thermography in patients with nonpalpable breast cancer. In: Engineering in Medicine and Biology Society, 1997. Proceedings of the 19th Annual International Conference of the IEEE, vol. 2, pp. 670–672, 30 Oct–2 Nov 1997

    Google Scholar 

  35. Ohashi, Y., Uchida, L.: Applying dynamic thermography in the diagnosis of breast cancer. Eng. Med. Biol. Mag. IEEE 19, 42–51 (2000)

    Article  Google Scholar 

  36. Arora, N., Martins, D., Ruggerio, D., Tousimis, E., Swistel, A.J., Osborne, M.P., Simmons, R.M.: Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer. Am. J. Surg. 196, 523–526 (2008)

    Article  Google Scholar 

  37. Maldague, X.P.: Theory and Practice of Infrared Technology for Nondestructive Testing. Wiley, New York (2001)

    Google Scholar 

  38. Kaczmarek, M., Nowakowski, A.: Active IR-thermal imaging in medicine. J. Nondestr. Eval. 35, 1–16 (2016)

    Article  Google Scholar 

  39. Nowakowski, A., Kaczmarek, M.: Active dynamic thermography—problems of implementation in medical diagnostics. Quant. InfraRed Thermogr. J. 8, 89–106 (2011)

    Article  Google Scholar 

  40. NowakowskI, A.: Quantitative Active Dynamic Thermal IR-Imaging and Thermal Tomography in Medical Diagnostics. Medical Infrared Imaging, CRC Press (2012)

    Google Scholar 

  41. Renkielska, A., Kaczmarek, M., Nowakowski, A., Grudzinski, J., Czapiewski, P., Krajewski, A., Grobelny, I.: Active dynamic infrared thermal imaging in burn depth evaluation. J. Burn Care Res. 35, e294–e303 (2014)

    Google Scholar 

  42. Kaczmarek, M., Rogowski, J.: The role of thermal monitoring in cardiosurgery interventions. In: Bronzino, J.D., Peterson, D.R. (eds.) Biomedical Signals, Imaging, and Informatics. CRC Press (2014)

    Google Scholar 

  43. Moderhak, M., Nowakowski, A., Kaczmarek, M., Siondalski, P., Jaworski, Ł.: Active dynamic thermography imaging of wound healing processes in cardio surgery. In: Piętka, E., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Biomedicine, vol. 4. Springer International Publishing, Cham (2014)

    Google Scholar 

  44. Kaczmarek, M., Nowakowski, A.: Analysis of transient thermal processes for improved visualization of breast cancer using IR imaging. In: Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE, pp. 1113–1116. IEEE (2003)

    Google Scholar 

  45. Kaczmarek, M., Nowakowski, A.: Active dynamic thermography in mammography. Task Quart. 8, 259–267 (2004)

    Google Scholar 

  46. Nowakowski, A.: Limitations of active dynamic thermography in medical diagnostics. In: Engineering in Medicine and Biology Society, 2004. IEMBS’04. 26th Annual International Conference of the IEEE, pp. 1179–1182. IEEE (2004)

    Google Scholar 

  47. Amri, A., Saidane, A., Pulko, S.: Thermal analysis of a three-dimensional breast model with embedded tumour using the transmission line matrix (TLM) method. Comput. Biol. Med. 41, 76–86 (2011)

    Article  Google Scholar 

  48. Haifeng, Z., Liqun, H., Liang, Z.: Critical conditions for the thermal diagnosis of the breast cancer. In: Bioinformatics and Biomedical Engineering, 2009. ICBBE 2009. 3rd International Conference, pp. 1–3, 11–13 June 2009

    Google Scholar 

  49. Hu, L., Gupta, A., Gore, J.P., Xu, L.X.: Effect of forced convection on the skin thermal expression of breast cancer. J. Biomech. Eng. 126, 204–211 (2004)

    Article  Google Scholar 

  50. Jiang, L., Zhan, W., Loew, M.H.: Modeling static and dynamic thermography of the human breast under elastic deformation. Phys. Med. Biol. 56, 187 (2011)

    Article  Google Scholar 

  51. Ng, E.Y.K., Sudharsan, N.M.: An improved three-dimensional direct numerical modelling and thermal analysis of a female breast with tumour. Proc. Inst. Mech. Eng. [H] 215, 25–37 (2001)

    Article  Google Scholar 

  52. Sudharsan, N., Ng, E.: Parametric optimization for tumour identification: bioheat equation using ANOVA and the Taguchi method. Proc. Inst. Mech. Eng. [H] 214, 505–512 (2000)

    Article  Google Scholar 

  53. Sudharsan, N., Ng, E., Teh, S.: Surface temperature distribution of a breast with and without tumour. Comput. Methods Biomech. Biomed. Eng. 2, 187–199 (1999)

    Article  Google Scholar 

  54. Chen, M.M., Pedersen, C.O., Chato, J.C.: On the feasibility of obtaining three-dimensional information from thermographic measurements. J. Biomech. Eng. 99, 58–64 (1977)

    Article  Google Scholar 

  55. Chen, M.M., Holmes, K.R.: Microvascular contributions in tissue heat transfer. Ann. N. Y. Acad. Sci. 335, 137–150 (1980)

    Article  Google Scholar 

  56. Klinger, H.: Heat transfer in perfused biological tissue—I: general theory. Bull. Math. Biol. 36, 403–415 (1974)

    MathSciNet  MATH  Google Scholar 

  57. Wulff, W.: The energy conservation equation for living tissue. IEEE Trans. Biomed. Eng. 6, 494–495 (1974)

    Article  Google Scholar 

  58. Weinbaum, S., Jiji, L.: A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. J. Biomech. Eng. 107, 131–139 (1985)

    Article  Google Scholar 

  59. Weinbaum, S., Jiji, L., Lemons, D.: Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer—part I: anatomical foundation and model conceptualization. J. Biomech. Eng. 106, 321–330 (1984)

    Article  Google Scholar 

  60. Stańczyk, M., Telega, J.: Modelling of heat transfer in biomechanics-a review. P. 1. Soft tissues. Acta Bioeng Biomech. 4, 31–61 (2002)

    Google Scholar 

  61. Arkin, H., Xu, L., Holmes, K.: Recent developments in modeling heat transfer in blood perfused tissues. Biomed. Eng. IEEE Trans. 41, 97–107 (1994)

    Article  Google Scholar 

  62. Zolfaghari, A., Maerefat, M.: Bioheat transfer. In: Bernardes, M.A.D.S. (ed.) Developments in Heat Transfer (2011)

    Google Scholar 

  63. Charny, C.K.: Mathematical models of bioheat transfer. Adv. Heat Transf. 22, 19–155 (1992)

    Article  Google Scholar 

  64. Khanafer, K., Vafai, K.: Synthesis of mathematical models representing bioheat transport. Adv. Numer. Heat Transf. 3, 87 (2009)

    Google Scholar 

  65. Charny, C.K., Weinbaum, S., Levin, R.L.: An evaluation of the Weinbaum-Jiji bioheat transfer model for simulations of hyperthermia. In: Roemer, R.B., Mcgrath, J.J., Bowman, H.F. (eds.) Winter Annual Meeting of the American Society of Mechanical Engineers, pp. 1–10, 10–15 Dec. San Francisco, California, New York (1989)

    Google Scholar 

  66. Draper, J.W., Boag, J.: The calculation of skin temperature distributions in thermography. Phys. Med. Biol. 16, 201 (1971)

    Article  Google Scholar 

  67. Amalu, W.C., Hobbins, W.B., Head, J.F., Elliott, R.L.: Infrared imaging of the breast-an overview. In: Bronzino, J.D. (ed.) Biomedical Engineering Handbook, 3rd edn. CRC Press (2006)

    Google Scholar 

  68. Lahiri, B., Bagavathiappan, S., Jayakumar, T., Philip, J.: Medical applications of infrared thermography: a review. Infrared Phys. Technol. 55, 221–235 (2012)

    Article  Google Scholar 

  69. Ng, E.Y.K.: A review of thermography as promising non-invasive detection modality for breast tumor. Int. J. Therm. Sci. 48, 849–859 (2009)

    Article  Google Scholar 

  70. Winslow, C.-E., Gagge, A., Herrington, L.: Heat exchange and regulation in radiant environments above and below air temperature. Am. J. Physiol.-Leg. Content 131, 79–92 (1940)

    Google Scholar 

  71. Mitchell, D., Wyndham, C., Hodgson, T., Nabarro, F.: Measurement of the total normal emissivity of skin without the need for measuring skin temperature. Phys. Med. Biol. 12, 359 (1967)

    Article  Google Scholar 

  72. Osman, M.M., Afify, E.M.: Thermal modeling of the normal woman’s breast. J. Biomech. Eng. 106, 123–130 (1984)

    Article  Google Scholar 

  73. Gautherie, M., Quenneville, Y., Gros, C.: Metabolic heat production, growth rate and prognosis of early breast carcinomas. Biomedicine 22, 328–336 (1975)

    Google Scholar 

  74. Gautherie, M.: Thermology of breast cancer: measurement and analysis of in vivo temperature and blood flow. Ann. N. Y. Acad. Sci. 335, 383–415 (1980)

    Article  Google Scholar 

  75. Priebe, L.: Heat transport and specific blood flow in homogeneously and isotropically perfused tissue. Physiol. Behav. Temp. Regul. 272–280 (1970)

    Google Scholar 

  76. Romrell L.J., Bland, K.I.: Anatomy of the breast, axilla, chest wall and related metastatic sites. Breast: Compr. Manag. Benign Malignant Dis. 22 (1998)

    Google Scholar 

  77. Ng, E.Y.K., Sudharsan, N.M.: Effect of blood flow, tumour and cold stress in a female breast: a novel time-accurate computer simulation. Proc. Inst. Mech. Eng. H. 215, 393–404 (2001)

    Article  Google Scholar 

  78. Amri, A., Pulko, S.H., Wilkinson, A.J.: Potentialities of steady-state and transient thermography in breast tumour depth detection: a numerical study. Comput. Methods Programs Biomed. 123, 68–80 (2016)

    Article  Google Scholar 

  79. De Cogan, D.: Transmission line matrix (TLM) techniques for diffusion applications. Gordon and Breach Science Publishers (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina Amri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Amri, A., Wilkinson, A.J., Pulko, S.H. (2017). Potentialities of Dynamic Breast Thermography. In: Ng, E., Etehadtavakol, M. (eds) Application of Infrared to Biomedical Sciences. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-3147-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3147-2_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3146-5

  • Online ISBN: 978-981-10-3147-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics