Skip to main content

Medical Thermal Tomography—Different Approaches

  • Chapter
  • First Online:
Application of Infrared to Biomedical Sciences

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

Thermal tomography is a new tool in medical diagnosis. It is based on so-called cold provocation. It is practically realized be a weak cooling of an upper layer of the skin. As it is noninvasive and harmless it can be applied as a screening procedure and repeated frequently. Using thermographic camera, the temperature recovery of the skin in time is measured and analyzed. In this chapter, three new methods of thermal tomography are presented. First, one is based on the analysis in time domain. The temperature versus time is approximated by the function which is a combination of exponential and error functions. The chosen parameters of this approximation that can be interpreted as the time constants are used then to visualize the blood vessels. The second approach uses the thermal modeling of the multilayer skin structure. The inverse thermal problem in frequency domain is solved to estimate the thermal parameters of each layer of the skin, including perfusion . The last procedure uses the wavelet transform (WT) to convert the large sequence of thermal images and reduce it just one amplitude and one phase image for an appropriate scale. The new two-step algorithm of WT for the image sequence is presented. This approach speeds up the analysis significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strakowska, M., Kaszuba, A., Strzelecki, M.: Novel methodology of medical screening using IR thermography. In: Signal Processing Algorithms, Architectures, Arrangements, and Applications—SPA 2014, Poznan, Poland (2014)

    Google Scholar 

  2. Laaperi, E., Laaperi, A.-L., Strąkowska, M., Więcek, B., Przymusiała, P.: Cold provocation improves breast cancer detection with IR thermography—a pilot study. Thermol. Int. 22(4), 152–156 (2012). ISSN 1560-604X

    Google Scholar 

  3. Kaczmarek, M., Nowakowski, A.: Analysis of transient thermal processes for improved visualization of breast cancer using IR imaging. In: Proceedings of the 25th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, vol. 2, pp. 1113–1116 (2003)

    Google Scholar 

  4. Ring, E.F.J., Ammer, K.: The technique of infrared imaging in medicine. Thermol. Int. 10(1) (2000)

    Google Scholar 

  5. Buzug, T.M., Schumann, S., Pfaffmann, L., Reinhold, U., Ruhlmann, J.: Functional infrared imaging for skin-cancer screening. In: EMBS Annual International Conference, New York City, USA, 30 Aug–3 Sept 2006

    Google Scholar 

  6. Więcek, P., Strakowska, M.: A novel tool for non destructive testing using frequency analysis of IR image sequences. Measur. Autom. Monit. MAM 61(06), 219–222

    Google Scholar 

  7. Maldague, X.: Theory and Practice of Infrared Technology for Nondestructive Testing. Wiley, New York (2001)

    Google Scholar 

  8. Zolfaghari, A., Maerefat, M.: In: Bernardes, M.A.D.S. (ed.) Bioheat Transfer, Developments in Heat Transfer, InTech, 2011. ISBN 978-953-307-569-3. Available from: http://www.intechopen.com/books/developments-in-heat-transfer/bioheat-transfer

  9. Valvano, J.W.: Bioheat transfer. In: Wiley “Encyclopedia of Medical Devices and Instrumentation”, 2nd edn. The University of Texas Austin, Texas (2005)

    Google Scholar 

  10. Mariotti, A., Di Carlo, L., Orlando, G., Corradini, M.L., Di Donato, L., Pompa, P., Iezzi, R., Cotroneo, A.R., Romani, G.L., Merla, A.: Scrotal thermoregulatory model and assessment of the impairment of scrotal temperature control in varicocele. Ann. Biomed. Eng. Feb. 39(2), 664–673 (2011)

    Article  Google Scholar 

  11. Rumiński, J., Kaczmarek, M., Nowakowski, A.: Medical active thermography—a new image reconstruction method, In: Lecture Notes in Computer Science, pp. 274–181, LNCS 2124, Springer, Berlin-Heidelberg (2001)

    Google Scholar 

  12. Strakowska, M., De Mey, G., Wiecek, B., Strzelecki, M.: A three layer model for the thermal impedance of the human skin: modelling and experimental measurements. J. Mech. Med. Biol. 15(3) (2015)

    Google Scholar 

  13. Strąkowska, M., Strąkowski, R., Strzelecki, M.: Thermal-time constant imaging in cold-stress screening. In: IEEE Conference on Signal Processing, Algorithms, Architectures, Arrangements, and Applications, SPA 2015, Poznan, Poland, 23–25 Sept 2015

    Google Scholar 

  14. Rumiński, J., Nowakowski, A., Kaczmarek, M., Hryciuk, M.: Model-based parametric images in dynamic thermography. Pol. J. Med. Phys. Eng. 6(3), 159–164 (2000)

    Google Scholar 

  15. Strakowska, M., Strakowski, R., Wiecek, B., Strzelecki, M.: Cross-correlation based movement correction method for biomedical dynamic infrared imaging. In: 11th International Conference on Quantitative InfraRed Thermography, QIRT 2012, Naples-Italy, 11–14 June 2012, ISBN 9788890648441

    Google Scholar 

  16. Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. I(2) 1948

    Google Scholar 

  17. Chen, M.M., Holmes, K.R.: Microvascular contributions in tissue heat transfer. Ann. N. Y. Acad. Sci. 335, 137–150 (1980). ISSN 0077-8923

    Google Scholar 

  18. Weinbaum, S., Jiji, L.M.: A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. ASME J. Biomech. Eng. 107, 131–139 (1985). ISSN 0148-0731

    Google Scholar 

  19. Jasiński, M.: Modelling of 1D Bioheat Transfer with Perfusion Coefficient Dependent on Tissue Necrosis (vol. 7), Scientific Research of the Institute of Mathematics and Computer Science, Czestochowa University of Technology (2008)

    Google Scholar 

  20. Khanafer, K., Vafai, K.: Synthesis of mathematical models representing bioheat transport. In: Advances in Numerical Heat Transfer (Chapter 1), vol. III, pp. 1–28. CRC Press, New York (2009)

    Google Scholar 

  21. Vermeersch, B., De Mey, G.: Thermal impedance plots of micro scaled devices. Microelectron. Reliab. 46, 174–177 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Więcek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Więcek, B., Strakowska, M., Więcek, P., Strakowski, R., De Mey, G. (2017). Medical Thermal Tomography—Different Approaches. In: Ng, E., Etehadtavakol, M. (eds) Application of Infrared to Biomedical Sciences. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-3147-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3147-2_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3146-5

  • Online ISBN: 978-981-10-3147-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics