Barnes, R.B.: Thermography. Thermography and its clinical applications. Ann. N. Y. Acad. Sci. 121:34-48 (1964) ( art.1)
Google Scholar
Ring, E.F.J.: The historical development of temperature measurement in medicine. Infrared Phys. Technol. 49, 297–301 (2007)
CrossRef
Google Scholar
Ring, E.F.J., Ammer, K.: Infrared thermal imaging in medicine. Physiol. Measur. 33:R33–R46 (2012)
Google Scholar
Diakides, M., Bronzino, J.D., Petereson, D.R. (eds.): Medical Infrared Imaging—Principles and Practices. CRC Press, T&F Group, Boca Raton (2013)
Google Scholar
Kaczmarek, M., Nowakowski, A.: Active IR-thermal imaging in medicine. J. Nondestr. Eval. 35:19 (2016). Doi:10.1007/s10921-016-0335-y
Maldague, X.P.V.: Theory and Practice of Infrared Technology for Nondestructive Testing. Wiley, New York (2001)
Google Scholar
Proceedings of Quantitative InfraRed Thermography: Chatenay-Malabary-1992, Naples-94, Stuttgart-1996, Lodz-1998, Venice-2000, Reims-2002, and Brussels-2004, Padova-2006, Krakow-2008, QuebeckCity-2010, Naples-2012, Bordeaux-2014, Gdansk-2016; see the QIRT homepage—http://qirt.org
Vavilov, V., Shirayev, V.: Thermal Tomograph—USSR Patent no. 1.266.308, 1985
Google Scholar
Vavilov, V.P., Kourtenkov, D., Grinzato, E., Bison, P., Marinetti, S., Bressan, C.: Inversion of experimental data and thermal tomography using “Thermo Heat” and “Termidge” Software, pp. 273–278 (1994)
Google Scholar
Vavilov, V.P.: 1D-2D-3D transition conditions in transient IR thermographic NDE. In: Proceedings of QIRT’94, Seminar 64—quantitative infra-red thermography—QIRT’2000, Reims, 74 (2000)
Google Scholar
Nowakowski, A., Kaczmarek, M., Hryciuk, M.: Tomografia Termiczna, 615–696. In: Chmielewski, L., Kulikowski, J.L., Nowakowski, A., Obrazowanie Biomedyczne, (Biomedical Imaging—in Polish) Biocybernetyka i Inżynieria Biomedyczna 2000, v. 8, Akademicka Oficyna Wydawnicza EXIT, Warszawa (2003)
Google Scholar
Shepard, S.M., Lhota, J.R., Rubadeux, B.A., Wang, D., Ahmed, T.: Reconstruction and enhancement of active thermographic image sequences. Opt. Eng. 42, 1337–1342 (2003)
CrossRef
Google Scholar
Balageas, D.L., Roche, J.M., Leroy, F.H., et al.: The thermographic signal reconstruction method: a powerful tool for the enhancement of transient thermographic images. Biocybern. Biomed. Eng. 35(1), 1–9 (2015)
CrossRef
Google Scholar
Liu, W.-M., Maivelett, J., Kato, G.J., Taylor, V.I.J.G., Yang, W.-C., Liu, Y.-C., Yang, Y.-G., Gorbach, A.M.: Reconstruction of thermographic signals to map perforator vessels in humans. Quant. InfraRed Thermogr. J. 9, 123–133 (2012)
CrossRef
Google Scholar
Steenhaut, O., Van Denhaute, E., Cornelis, J.: Contrast enhancement in IR-thermography by application of microwave irradiation applied to tumor detection. In: MECOMBE, vol. 86, pp. 485–488 (1986)
Google Scholar
Nowakowski, A, Kaczmarek, M.: Dynamic thermography as a quantitative medical diagnostic tool. Med. Biol. Eng. Comput. Incorp. Cell. Eng. Part 1 37(1):244–245 (1999)
Google Scholar
Rumiński, J., Kaczmarek, M., Nowakowski, A.: Data visualization in dynamic thermography. J. Med. Inform. Technol. 5:IT29–IT36 (2000)
Google Scholar
Kaczmarek, M., Rumiński, J., Nowakowski, A.: Measurement of thermal properties of biological tissues—comparison of different thermal NDT techniques. In: Proceedings of Advanced Infrared Technology and Application, Venice, 1999, pp. 322–329 (2001)
Google Scholar
Nowakowski, A., Kaczmarek, M., Rumiński, J., Hryciuk, M., Renkielska, A., Grudziński, J., Siebert, J., Jagielak, D., Rogowski, J., Roszak, K., Stojek, W.: Medical applications of model based dynamic thermography, Thermosense XIII, Orlando. Proc. SPIE 4360, 492–503 (2001)
CrossRef
Google Scholar
Nowakowski, A., Kaczmarek, M., Rumiński, J.: Synthetic pictures in thermographic diagnostics. In: Proceedings of EMBS-BMES Conference, Houston, pp. 1131–1132 (2002)
Google Scholar
Kaczmarek, M., Nowakowski, A., Renkielska, A.: Rating burn wounds by dynamic thermography. In: Balageas, D., Beaudoin, J., Busse. G., Carlomagno, G. (ed.) Quantitative InfraRed Thermography, vol. 5, pp. 376–381. Reims (2000)
Google Scholar
Kaczmarek, M., Nowakowski, A., Renkielska, A., Grudziński, J., Stojek, W.: Investigation of skin burns basing on active thermography. In: Proceedings of 23-rd Annual International Conference IEEE EMBS, CD-ROM, Istanbul (2001)
Google Scholar
Hryciuk M., Nowakowski A., Multi-layer thermal model of healthy and burned skin. In: Proceedings of 2nd European Medical and Biological Engineering Conference, EMBEC´02, 3, Pt. 2, Vienna, pp. 1614–1617 (2002)
Google Scholar
Hryciuk, M., Nowakowski, A.: Evaluation of thermal diffusivity variations in multi-layered structures. In: Proceedings of 6 QIRT, Zagreb, pp. 267–274 (2003)
Google Scholar
Nowakowski, A., Kaczmarek, M., Wtorek, J., Siebert, J., Jagielak, D., Roszak, K., Topolewicz, J.: Thermographic and electrical measurements for cardiac surgery inspection. In: Proceedings of 23rd Annual International Conference IEEE EMBS, CD-ROM, Istanbul (2001)
Google Scholar
Kaczmarek, M., Nowakowski, A.: Analysis of transient thermal processes for improved visualization of breast cancer using IR imaging. In: Proceedings of IEEE EMBC, Cancun, pp. 1113–1116 (2003)
Google Scholar
Renkielska, A., Kaczmarek, M., Nowakowski, A., Grudziński, J., Czapiewski, P., Krajewski, A., Grobelny, I.: Active dynamic infrared thermal imaging in burn depth evaluation. J. Burn Care Res. 35(5):e294–e303 (2014)
Google Scholar
Moderhak, M., Nowakowski, A., Kaczmarek, M., Siondalski, P., Jaworski, Ł.: Active dynamic thermography imaging of wound healing process in cardiosurgery. In: Advances in Intelligent Systems and Computing, Information Technologies in Medicine, vol. 284, pp. 197–202. Springer, Berlin (2014)
Google Scholar
Nowakowski, A., Siondalski, P., Moderhak, M., Kaczmarek, M.: A new diagnostic method for evaluation of cardiosurgery wound healing. Quant. InfraRed Thermogr. J. (2015)
Google Scholar
Jackson, D.M.: The diagnosis of the depth of burning. Br. J. Surg. 40, 588–596 (1953)
CrossRef
Google Scholar
Engrav, L.H., Heimbach, D.M., Reus, J.L., Harnar, T.J., Marvin, J.A.: Early excision and grafting vs. non-operative treatment of burns of indeterminate depth: a randomised prospective study. J. Trauma 23, 1001–1004 (1983)
CrossRef
Google Scholar
Heimbach, D., Engrav, L., Grube, B., Marvin, J.: Burn depth: a review. World J. Surg. 16, 10–15 (1992)
CrossRef
Google Scholar
Monstrey, S., Hoeksema, H., Verbelen, J., Pirayesh, A., Blondeel, P.: Assessment of burn depth and burn wound healing potential. Burns 34, 761–769 (2008)
CrossRef
Google Scholar
Altintas, A.A., Guggenheim, M., Altintas, M.A., Amini, P., Stasch, T., Spilker, G.: To heal or not to heal: predictive value of in-vivo reflectance-mode confocal microscopy in assessing healing course of human burn wounds. J Burn Care Res. 30(6), 1007–1012 (2009)
Google Scholar
Alkhwaji, A., Vick, B., Diller, T.: Estimaiting burn depth from thermal measurements. Biomed. Sci. Instrum. 48, 12–19 (2012)
Google Scholar
Goertz, O., Ring, A., Köhlinger, A., Daigeler, A., Andree, Ch., Steinau, H.U., Langer, S.: Orthogonal polarization spectral imaging—a tool for assessing burn depths? Ann. Plast. Surg. 64(2), 217–221 (2010)
CrossRef
Google Scholar
Mihara, K., Shindo, H., Ohtani, M., Nagasaki, K., Nakashima, R., Katoh, N., Kishimoto, S.: Early depth assessment of local burns by videomicroscopy: 24 h after injury is a critical time point. Burns 37, 986–993 (2011)
CrossRef
Google Scholar
Merz, K.M., Pfau, M., Blumenstock, G., Tenenhaus, M., Schaller, A.E., Rennekampff, H.O.: Cutaneous microcirculatory assessment of the burn wound is associated with depth of injury and predicts healing time. Burns 36, 477–482 (2010)
CrossRef
Google Scholar
Hoeksema, H., Vaje, K., Tondu, T., Hamadi, M., Van Landuyt, K., Blondeel, Ph, Monstrey, S.: Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn. Burns 35, 36–45 (2009)
CrossRef
Google Scholar
Wang, X.Q., Mill, J., Kravchuk, O., Kimble, R.M.: Ultrasound assessment thickness of burn scars in association with laser Doppler imaging determined depth of burns in pediatric patients. Burns 36, 1254–1262 (2010)
CrossRef
Google Scholar
Sharma, V., O’Boyle, C., Jeffery, S.L.A.: Man or machine? The clinometric properties of laser Doppler imaging in burn depth assessment. J Burn Care Res. 32, 143–149 (2011)
CrossRef
Google Scholar
Nowakowski, A., Kaczmarek, M., Rogowski, J.: The role of thermal monitoring in cardiosurgery interventions. In: Diakides, M., Bronzino, J.D., Petereson, D.R. (ed.) Medical Infrared Imaging—Principles and Practices, pp. 17-1–17-24. CRC Press, Taylor & Francis Group, Boca Raton (2013)
Google Scholar
Bruce, J., Russell, E.M., Mollison, J., Krukowski, Z.H.: The quality of measurement of surgical wound infection as the basis for monitoring: a systematic review. J. Hosp. Infect. 49:99–108 (2001)
Google Scholar
Siondalski, P.: Algorytm leczenia powikłań gojenia się ran pooperacyjnych i ropnego zapalenia śródpiersia po operacjach kardiochirurgicznych [Algorithm dealing with the treatment of healing wound complications and mediastinitis after cardiac surgeries]. Annales Academiae Medicae Gedanensis. 39(2), 303–413 (2009)
Google Scholar
Feig, S.A., Shaber, G.S., Schwartz, G.F., et al.: Thermography, mammography, and clinical examination in breast cancer screening. Review of 16,000 studies. Radiology 122, 123–127 (1977)
CrossRef
Google Scholar
Kontos, M., Wilson, R., Fentiman, I.: Digital infrared thermal imaging (DITI) of breast lesions: sensitivity and specificity of detection of primary breast cancers. Clin. Radiol. 66(6), 536–539 (2011)
CrossRef
Google Scholar