Skip to main content

Active Dynamic Thermography in Medical Diagnostics

Part of the Series in BioEngineering book series (SERBIOENG)

Abstract

This is an overview of active thermal imaging methods in medical diagnostics using external thermal stimulation. In this chapter, several clinical cases diagnosed using the active dynamic thermography method, ADT, are presented. Features of this technology are discussed and main advantages underlined. Applications in skin burn diagnostics and quantitative evaluation leading to modern classification of burned patients for further treatment are shown. Also the use of thermal imaging in cardiosurgery is discussed. A method of quantitative evaluation of the healing progress of post-cardiosurgery wounds is presented. The ADT method gives quantitative description of thermal structural data, supplementing well-established static thermal imaging that carry functional physiological information. Combination of both modalities supports the idea of modern multimodality approach in medical diagnostics.

Keywords

  • Thermal imaging
  • Thermal stimulation
  • Signal processing
  • Thermography

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-3147-2_17
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-3147-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Barnes, R.B.: Thermography. Thermography and its clinical applications. Ann. N. Y. Acad. Sci. 121:34-48 (1964) ( art.1)

    Google Scholar 

  2. Ring, E.F.J.: The historical development of temperature measurement in medicine. Infrared Phys. Technol. 49, 297–301 (2007)

    CrossRef  Google Scholar 

  3. Ring, E.F.J., Ammer, K.: Infrared thermal imaging in medicine. Physiol. Measur. 33:R33–R46 (2012)

    Google Scholar 

  4. Diakides, M., Bronzino, J.D., Petereson, D.R. (eds.): Medical Infrared Imaging—Principles and Practices. CRC Press, T&F Group, Boca Raton (2013)

    Google Scholar 

  5. Kaczmarek, M., Nowakowski, A.: Active IR-thermal imaging in medicine. J. Nondestr. Eval. 35:19 (2016). Doi:10.1007/s10921-016-0335-y

  6. Maldague, X.P.V.: Theory and Practice of Infrared Technology for Nondestructive Testing. Wiley, New York (2001)

    Google Scholar 

  7. Proceedings of Quantitative InfraRed Thermography: Chatenay-Malabary-1992, Naples-94, Stuttgart-1996, Lodz-1998, Venice-2000, Reims-2002, and Brussels-2004, Padova-2006, Krakow-2008, QuebeckCity-2010, Naples-2012, Bordeaux-2014, Gdansk-2016; see the QIRT homepage—http://qirt.org

  8. Vavilov, V., Shirayev, V.: Thermal Tomograph—USSR Patent no. 1.266.308, 1985

    Google Scholar 

  9. Vavilov, V.P., Kourtenkov, D., Grinzato, E., Bison, P., Marinetti, S., Bressan, C.: Inversion of experimental data and thermal tomography using “Thermo Heat” and “Termidge” Software, pp. 273–278 (1994)

    Google Scholar 

  10. Vavilov, V.P.: 1D-2D-3D transition conditions in transient IR thermographic NDE. In: Proceedings of QIRT’94, Seminar 64—quantitative infra-red thermography—QIRT’2000, Reims, 74 (2000)

    Google Scholar 

  11. Nowakowski, A., Kaczmarek, M., Hryciuk, M.: Tomografia Termiczna, 615–696. In: Chmielewski, L., Kulikowski, J.L., Nowakowski, A., Obrazowanie Biomedyczne, (Biomedical Imaging—in Polish) Biocybernetyka i Inżynieria Biomedyczna 2000, v. 8, Akademicka Oficyna Wydawnicza EXIT, Warszawa (2003)

    Google Scholar 

  12. Shepard, S.M., Lhota, J.R., Rubadeux, B.A., Wang, D., Ahmed, T.: Reconstruction and enhancement of active thermographic image sequences. Opt. Eng. 42, 1337–1342 (2003)

    CrossRef  Google Scholar 

  13. Balageas, D.L., Roche, J.M., Leroy, F.H., et al.: The thermographic signal reconstruction method: a powerful tool for the enhancement of transient thermographic images. Biocybern. Biomed. Eng. 35(1), 1–9 (2015)

    CrossRef  Google Scholar 

  14. Liu, W.-M., Maivelett, J., Kato, G.J., Taylor, V.I.J.G., Yang, W.-C., Liu, Y.-C., Yang, Y.-G., Gorbach, A.M.: Reconstruction of thermographic signals to map perforator vessels in humans. Quant. InfraRed Thermogr. J. 9, 123–133 (2012)

    CrossRef  Google Scholar 

  15. Steenhaut, O., Van Denhaute, E., Cornelis, J.: Contrast enhancement in IR-thermography by application of microwave irradiation applied to tumor detection. In: MECOMBE, vol. 86, pp. 485–488 (1986)

    Google Scholar 

  16. Nowakowski, A, Kaczmarek, M.: Dynamic thermography as a quantitative medical diagnostic tool. Med. Biol. Eng. Comput. Incorp. Cell. Eng. Part 1 37(1):244–245 (1999)

    Google Scholar 

  17. Rumiński, J., Kaczmarek, M., Nowakowski, A.: Data visualization in dynamic thermography. J. Med. Inform. Technol. 5:IT29–IT36 (2000)

    Google Scholar 

  18. Kaczmarek, M., Rumiński, J., Nowakowski, A.: Measurement of thermal properties of biological tissues—comparison of different thermal NDT techniques. In: Proceedings of Advanced Infrared Technology and Application, Venice, 1999, pp. 322–329 (2001)

    Google Scholar 

  19. Nowakowski, A., Kaczmarek, M., Rumiński, J., Hryciuk, M., Renkielska, A., Grudziński, J., Siebert, J., Jagielak, D., Rogowski, J., Roszak, K., Stojek, W.: Medical applications of model based dynamic thermography, Thermosense XIII, Orlando. Proc. SPIE 4360, 492–503 (2001)

    CrossRef  Google Scholar 

  20. Nowakowski, A., Kaczmarek, M., Rumiński, J.: Synthetic pictures in thermographic diagnostics. In: Proceedings of EMBS-BMES Conference, Houston, pp. 1131–1132 (2002)

    Google Scholar 

  21. Kaczmarek, M., Nowakowski, A., Renkielska, A.: Rating burn wounds by dynamic thermography. In: Balageas, D., Beaudoin, J., Busse. G., Carlomagno, G. (ed.) Quantitative InfraRed Thermography, vol. 5, pp. 376–381. Reims (2000)

    Google Scholar 

  22. Kaczmarek, M., Nowakowski, A., Renkielska, A., Grudziński, J., Stojek, W.: Investigation of skin burns basing on active thermography. In: Proceedings of 23-rd Annual International Conference IEEE EMBS, CD-ROM, Istanbul (2001)

    Google Scholar 

  23. Hryciuk M., Nowakowski A., Multi-layer thermal model of healthy and burned skin. In: Proceedings of 2nd European Medical and Biological Engineering Conference, EMBEC´02, 3, Pt. 2, Vienna, pp. 1614–1617 (2002)

    Google Scholar 

  24. Hryciuk, M., Nowakowski, A.: Evaluation of thermal diffusivity variations in multi-layered structures. In: Proceedings of 6 QIRT, Zagreb, pp. 267–274 (2003)

    Google Scholar 

  25. Nowakowski, A., Kaczmarek, M., Wtorek, J., Siebert, J., Jagielak, D., Roszak, K., Topolewicz, J.: Thermographic and electrical measurements for cardiac surgery inspection. In: Proceedings of 23rd Annual International Conference IEEE EMBS, CD-ROM, Istanbul (2001)

    Google Scholar 

  26. Kaczmarek, M., Nowakowski, A.: Analysis of transient thermal processes for improved visualization of breast cancer using IR imaging. In: Proceedings of IEEE EMBC, Cancun, pp. 1113–1116 (2003)

    Google Scholar 

  27. Renkielska, A., Kaczmarek, M., Nowakowski, A., Grudziński, J., Czapiewski, P., Krajewski, A., Grobelny, I.: Active dynamic infrared thermal imaging in burn depth evaluation. J. Burn Care Res. 35(5):e294–e303 (2014)

    Google Scholar 

  28. Moderhak, M., Nowakowski, A., Kaczmarek, M., Siondalski, P., Jaworski, Ł.: Active dynamic thermography imaging of wound healing process in cardiosurgery. In: Advances in Intelligent Systems and Computing, Information Technologies in Medicine, vol. 284, pp. 197–202. Springer, Berlin (2014)

    Google Scholar 

  29. Nowakowski, A., Siondalski, P., Moderhak, M., Kaczmarek, M.: A new diagnostic method for evaluation of cardiosurgery wound healing. Quant. InfraRed Thermogr. J. (2015)

    Google Scholar 

  30. Jackson, D.M.: The diagnosis of the depth of burning. Br. J. Surg. 40, 588–596 (1953)

    CrossRef  Google Scholar 

  31. Engrav, L.H., Heimbach, D.M., Reus, J.L., Harnar, T.J., Marvin, J.A.: Early excision and grafting vs. non-operative treatment of burns of indeterminate depth: a randomised prospective study. J. Trauma 23, 1001–1004 (1983)

    CrossRef  Google Scholar 

  32. Heimbach, D., Engrav, L., Grube, B., Marvin, J.: Burn depth: a review. World J. Surg. 16, 10–15 (1992)

    CrossRef  Google Scholar 

  33. Monstrey, S., Hoeksema, H., Verbelen, J., Pirayesh, A., Blondeel, P.: Assessment of burn depth and burn wound healing potential. Burns 34, 761–769 (2008)

    CrossRef  Google Scholar 

  34. Altintas, A.A., Guggenheim, M., Altintas, M.A., Amini, P., Stasch, T., Spilker, G.: To heal or not to heal: predictive value of in-vivo reflectance-mode confocal microscopy in assessing healing course of human burn wounds. J Burn Care Res. 30(6), 1007–1012 (2009)

    Google Scholar 

  35. Alkhwaji, A., Vick, B., Diller, T.: Estimaiting burn depth from thermal measurements. Biomed. Sci. Instrum. 48, 12–19 (2012)

    Google Scholar 

  36. Goertz, O., Ring, A., Köhlinger, A., Daigeler, A., Andree, Ch., Steinau, H.U., Langer, S.: Orthogonal polarization spectral imaging—a tool for assessing burn depths? Ann. Plast. Surg. 64(2), 217–221 (2010)

    CrossRef  Google Scholar 

  37. Mihara, K., Shindo, H., Ohtani, M., Nagasaki, K., Nakashima, R., Katoh, N., Kishimoto, S.: Early depth assessment of local burns by videomicroscopy: 24 h after injury is a critical time point. Burns 37, 986–993 (2011)

    CrossRef  Google Scholar 

  38. Merz, K.M., Pfau, M., Blumenstock, G., Tenenhaus, M., Schaller, A.E., Rennekampff, H.O.: Cutaneous microcirculatory assessment of the burn wound is associated with depth of injury and predicts healing time. Burns 36, 477–482 (2010)

    CrossRef  Google Scholar 

  39. Hoeksema, H., Vaje, K., Tondu, T., Hamadi, M., Van Landuyt, K., Blondeel, Ph, Monstrey, S.: Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn. Burns 35, 36–45 (2009)

    CrossRef  Google Scholar 

  40. Wang, X.Q., Mill, J., Kravchuk, O., Kimble, R.M.: Ultrasound assessment thickness of burn scars in association with laser Doppler imaging determined depth of burns in pediatric patients. Burns 36, 1254–1262 (2010)

    CrossRef  Google Scholar 

  41. Sharma, V., O’Boyle, C., Jeffery, S.L.A.: Man or machine? The clinometric properties of laser Doppler imaging in burn depth assessment. J Burn Care Res. 32, 143–149 (2011)

    CrossRef  Google Scholar 

  42. Nowakowski, A., Kaczmarek, M., Rogowski, J.: The role of thermal monitoring in cardiosurgery interventions. In: Diakides, M., Bronzino, J.D., Petereson, D.R. (ed.) Medical Infrared Imaging—Principles and Practices, pp. 17-1–17-24. CRC Press, Taylor & Francis Group, Boca Raton (2013)

    Google Scholar 

  43. Bruce, J., Russell, E.M., Mollison, J., Krukowski, Z.H.: The quality of measurement of surgical wound infection as the basis for monitoring: a systematic review. J. Hosp. Infect. 49:99–108 (2001)

    Google Scholar 

  44. Siondalski, P.: Algorytm leczenia powikłań gojenia się ran pooperacyjnych i ropnego zapalenia śródpiersia po operacjach kardiochirurgicznych [Algorithm dealing with the treatment of healing wound complications and mediastinitis after cardiac surgeries]. Annales Academiae Medicae Gedanensis. 39(2), 303–413 (2009)

    Google Scholar 

  45. Feig, S.A., Shaber, G.S., Schwartz, G.F., et al.: Thermography, mammography, and clinical examination in breast cancer screening. Review of 16,000 studies. Radiology 122, 123–127 (1977)

    CrossRef  Google Scholar 

  46. Kontos, M., Wilson, R., Fentiman, I.: Digital infrared thermal imaging (DITI) of breast lesions: sensitivity and specificity of detection of primary breast cancers. Clin. Radiol. 66(6), 536–539 (2011)

    CrossRef  Google Scholar 

Download references

Acknowledgements

Participation of coworkers from the Department of Biomedical Engineering Gdansk University of Technology, the Department of Plastic Surgery and the Department of Cardiac Surgery Gdansk University of Medicine is acknowledged; the research was financed by several research grants, recently NCN UMO-2011/03/B/ST7/03423 and partly from the statute funds of the Faculty of Electronics, Telecommunications and Informatics GUT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Kaczmarek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kaczmarek, M., Nowakowski, A. (2017). Active Dynamic Thermography in Medical Diagnostics. In: Ng, E., Etehadtavakol, M. (eds) Application of Infrared to Biomedical Sciences. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-3147-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3147-2_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3146-5

  • Online ISBN: 978-981-10-3147-2

  • eBook Packages: EngineeringEngineering (R0)