Advertisement

Infrared Thermography for Detection of Diabetic Neuropathy and Vascular Disorder

  • B. B. Lahiri
  • S. Bagavathiappan
  • Baldev Raj
  • John PhilipEmail author
Chapter
Part of the Series in BioEngineering book series (SERBIOENG)

Abstract

Body temperature is a significant indicator of illness and hence is a useful parameter for clinical diagnosis. Among various techniques available for accurate and reliable measurement of subject temperature, infrared thermography is a relatively new methodology. However, it has become popular because of its noncontact, noninvasive, and real-time temperature measurement capability. During the last few decades, numerous applications of infrared thermography are reported in the field of medical sciences, which are rapidly growing. Diabetes is a metabolic disorder associated with high blood sugar levels over prolonged duration. One in every 11 adult population of the world is affected by diabetes and for every 6 s, one person dies from diabetes-induced complications. Therefore, a worldwide dedicated effort to prevent diabetic complications by early detection is important. Studies so far reveal that infrared thermography is capable of detecting subtle changes in skin temperature distribution in diabetic-at-risk foot and is capable of early detection diabetic-related peripheral neuropathy and vascular disorders. This chapter attempts to highlight the applications of infrared thermography in the early detection of diabetic neuropathy and vascular disorder. The basics of infrared thermography, classification of medical thermography techniques, details of infrared camera, ideal experimental conditions, data analysis, etc. along with typical case studies are discussed in detail.

Keywords

Diabetic neuropathy Vascular disorder Classification Experimental conditions Data analysis 

Notes

Acknowledgements

The authors wish to thank Dr. A.K. Bhaduri, Director, Metallurgy and Materials Group, IGCAR for his support and encouragement.

References

  1. 1.
    Houdas, Y., Ring, E.F.J.: Human Body Temperature. Plenum, New York (1982)CrossRefGoogle Scholar
  2. 2.
    Ring, E.F.J.: The historical development of temperature measurement in medicine. Infrared Phys. Technol. 49, 297–301 (2007)CrossRefGoogle Scholar
  3. 3.
    Tan, J.H., Ng, E.Y.K., Acharya, U.R., Chee, C.: Study of normal ocular thermogram using textural parameters Infrared Phys. Technol. 53, 120–126 (2010)Google Scholar
  4. 4.
    Wunderlich, C., Woodman, W.: On the Temperature in Diseases, A Manual of Medical Thermometry, vol. 71 The New Sydenham Society, London, England (1871)Google Scholar
  5. 5.
    Maldague, X.: Theory and Practice of Infrared Technology for Nondestructive Testing, 1st edn. Wiley, New York (2001)Google Scholar
  6. 6.
    Meola, C.: Infrared Thermography: Recent Advances and Future Trends. Bentham eBooks (2012)Google Scholar
  7. 7.
    Bagavathiappan, S., Lahiri, B.B., Saravanan, T., Philip, J., Jayakumar, T.: Infrared thermography for condition monitoring—A review. Infrared Phys. Technol. 60, 35–55 (2013)CrossRefGoogle Scholar
  8. 8.
    Lahiri, B.B., Bagavathiappan, S., Soumya, C., Mahendran, V., Pillai, V.P.M., Philip, J., Jayakumar, T.: Infrared thermography based defect detection in ferromagnetic specimens using a low frequency alternating magnetic field. Infrared Phys. Technol. 64, 125–133 (2014)CrossRefGoogle Scholar
  9. 9.
    Lahiri, B.B., Haneef, T.K., Bagavathiappan, S., Kulasegaran, N., Mukhopadhyay, C.K., Jayakumar, T., Philip, J.: Infrared thermography-based studies on hydrotesting of stainless steel pressure vessels. Insight 57, 406–413 (2015)Google Scholar
  10. 10.
    Lahiri, B.B., Bagavathiappan, S., Jayakumar, T., Philip, J.: Medical applications of infrared thermography: a review. Infrared Phys. Technol. 55, 221–235 (2012)CrossRefGoogle Scholar
  11. 11.
    Jones, B., Plassmann, P.: Digital infrared thermal imaging of human skin. IEEE Eng. Med. Biol. Mag. 21, 41–48 (2002)CrossRefGoogle Scholar
  12. 12.
    Jones, B.F.: A reappraisal of the use of infrared thermal image analysis in medicine. IEEE Trans. Med. Imaging 17, 1019–1027 (1998)CrossRefGoogle Scholar
  13. 13.
    Ammer, K., Ring, E.F.J.: The Thermal Image in Medicine and Biology. Uhlen-Verlag, Vienna (1995)Google Scholar
  14. 14.
    Lahiri, B.B., Bagavathiappan, S., Nishanthi, K., Mohanalakshmi, K., Veni, L., Yacin, S.M., Philip, J.: Infrared thermography based studies on the effect of age on localized cold stress induced thermoregulation in human. Infrared Phys. Technol. 76, 592–602 (2016)CrossRefGoogle Scholar
  15. 15.
    Lahiri, B.B., Bagavathiappan, S., Soumya, C., Jayakumar, T., Philip, J.: Infrared thermography based studies on mobile phone induced heating. Infrared Phys. Technol. 71, 242–251 (2015)CrossRefGoogle Scholar
  16. 16.
    Lahiri, B.B., Divya, M.P., Bagavathiappan, S., Thomas, S., Philip, J.: Detection of pathogenic gram negative bacteria using infrared thermography. Infrared Phys. Technol. 55, 485–490 (2012)CrossRefGoogle Scholar
  17. 17.
    Ring, E.F.J., Ammer, K.: Infrared thermal imaging in medicine. Physiol. Meas. 33, R33–R46 (2012)CrossRefGoogle Scholar
  18. 18.
    Jung, A., Zuber, J., Ring, F.: A Case Book of Infrared Imaging in Clinical Medicine. MedPress, Warszawa (2003)Google Scholar
  19. 19.
    Yang, W.J., Yang, P.P.: Literature survey on biomedical applications of thermography. Biomed. Mater. Eng. 2, 7–18 (1992)Google Scholar
  20. 20.
    Fauci, M.A., Breiter, R., Cabanski, W., Fick, W., Koch, R., Ziegler, J., Gunapala, S.D.: Medical infrared imaging-differentiating facts from friction, and the impact of high precision quantum well infrared photodetector camera systems, and other factors, in its reemergence. Infrared Phys. Technol. 42, 334–344 (2001)CrossRefGoogle Scholar
  21. 21.
    Jiang, L.J., Ng, E.Y., Yeo, A.C., Wu, S., Pan, F., Yau, W.Y., Chen, J.H., Yang, Y.: A perspective on medical infrared imaging. J. Med. Eng. Technol. 29, 257–267 (2005)CrossRefGoogle Scholar
  22. 22.
    Ring, E.F.J., Jung, A., Zuber, J.: New opportunities for infrared thermography in medicine. Acta Bio-Opt. Inf. Med. 15, 28–30 (2009)Google Scholar
  23. 23.
    Faust, O., Acharya, U.R., Ng, E.Y.K., Hong, T.J., Yu, W.: Application of infrared thermography in computer aided diagnosis. Infrared Phys. Technol. 66, 160–175 (2014)CrossRefGoogle Scholar
  24. 24.
    Bitar, D., Goubar, A., Desenclos, J.C.: International travels and fever screening during epidemics: a literature review on the effectiveness and potential use of non-contact infrared thermometers. Eurosurveillance 14, 1–5 (2009)Google Scholar
  25. 25.
    Mercer, J.B., Ring, E.F.J.: Fever Screening and infrared thermal imaging: concerns and guidelines. Thermol. Int. 19, 67–69 (2009)Google Scholar
  26. 26.
    Ng, E., Kaw, G.: IR images and fever monitoring devices: physics, physiology, and clinical accuracy. In: Medical Devices and Systems, Biomedical Engineering Handbook. CRC Press, Boca Ranton (FL) (2006)Google Scholar
  27. 27.
    Ng, E.Y.K.: Is thermal scanner losing its bite in mass screening of fever due to SARS? Med. Phys. 32, 93–97 (2005)CrossRefGoogle Scholar
  28. 28.
    Ng, E.Y.K., Kaw, G., Chang, W.M.: Analysis of IR thermal imager for mass blind fever screening. Microvasc. Res. 68, 104–109 (2004)CrossRefGoogle Scholar
  29. 29.
    Ring, E.F.J., Jung, A., Zuber, J., Rutowski, P., Kalicki, B., Bajwa, U.: Detecting fever in Polish children by infrared thermography. In: 9th International Conference on Quantitative Infrared Thermography, Krakow, Poland (2008)Google Scholar
  30. 30.
    Ring, F.: Pandemic: thermography for fever screening of airport passengers. Thermol. Int. 17, 67 (2007)Google Scholar
  31. 31.
    Ring, F., Mercer, J.: Thermal imaging for fever screening, pp. 33–35, ISO Focus, February (2007)Google Scholar
  32. 32.
    Amalu, W.C., Hobbins, W.B., Head, J.F., Elliot, R.L.L: Infrared imaging of the breast—an overview. In: Bronzino, J.D. (ed.) Biomedical Engineering Handbook, Medical Devices and Systems, 3rd edn, pp. 20. CRC Press (2006)Google Scholar
  33. 33.
    Louis, J.W.K., Gautherie, M.: Long term assessment of breast cancer risk by thermal imaging. Biomed. Thermol., 279–301 (1982)Google Scholar
  34. 34.
    Kennedy, D., Lee, T., Seely, D.: A comparative review of thermography as a breast screening technique. Integr. Cancer. Ther. 8, 9–16 (2009)CrossRefGoogle Scholar
  35. 35.
    Ng, E.Y.K.: A review of thermography as promising non-invasive detection modality for breast tumor. Int. J. Therm. Sci. 48, 849–859 (2009)CrossRefGoogle Scholar
  36. 36.
    Ng, E.Y.K., Kee, E.C.: Advanced integrated technique in breast cancer thermography. J. Med. Eng. Technol. 32, 103–114 (2008)CrossRefGoogle Scholar
  37. 37.
    Tan, T.Z., Quek, C., Ng, G.S., Ng, E.Y.K.: A novel cognitive interpretation of breast cancer thermography with complementary learning fuzzy neural memory structure. Expert Syst. Appl. 33, 652–666 (2007)CrossRefGoogle Scholar
  38. 38.
    Shevelev, I.A.: Functional imaging of the brain by infrared radiation (thermoencephaloscopy). Prog. Neurobiol. 56, 269–305 (1998)CrossRefGoogle Scholar
  39. 39.
    Fikackova, H., Ekberg, E.: Can infrared thermography be a diagnostic tool for arthralgia of the temporomandibular joint? Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 98, 643–650 (2004)CrossRefGoogle Scholar
  40. 40.
    Carlo, A.D.: Thermography and the possibilities for its applications in clinical and experimental dermatology. Clin. Dermatol. 13, 329–336 (1995)CrossRefGoogle Scholar
  41. 41.
    Anbar, M., Gratt, B., Hong, D.: Thermology and facial telethermography. Part I: History and technical review. Dentomaxillofac. Radiol. 27, 61–67 (1998)CrossRefGoogle Scholar
  42. 42.
    Gratt, B., Anbar, M.: Thermology and facial telethermography: Part II. Current and future clinical applications in dentistry. Dentomaxillofac. Radiol. 27, 68–74 (1998)CrossRefGoogle Scholar
  43. 43.
    Park, J., Hyun, J.K., Seo, J.: The effectiveness of digital infrared thermographic imaging in patients with shoulder impingement syndrome. J. Shoulder Elbow Surg. 16, 548–554 (2007)CrossRefGoogle Scholar
  44. 44.
    Zelichowska, B., Rozycki, R., Tlustochowicz, M., Kujawa, A., Kalicki, B., Murawski, P.: The usefulness of the thermography in the dry eye syndrome. Klin. Oczna 107, 483–487 (2005)Google Scholar
  45. 45.
    Tan, J.H., Ng, E.Y.K., Acharya, U.R., Chee, C.: Infrared thermography on ocular surface temperature: a review. Infrared Phys. Technol. 52, 97–108 (2009)CrossRefGoogle Scholar
  46. 46.
    Cosh, J.A., Ring, E.F.J.: Thermography and rheumatology. Rheumatology 10, 342–348 (1970)CrossRefGoogle Scholar
  47. 47.
    Jacobsson, H., Vesterskold, L.: The thermographic pattern of the lower back with special reference to the sacro-iliac joints in health and inflammation. Clin. Rheumatol. 4, 426–432 (1985)CrossRefGoogle Scholar
  48. 48.
    Vecchio, P.C., Adebajo, A.O., Chard, M.D., Thomas, P.P., Hazleman, B.L.: Thermography of frozen shoulder and rotator cuff tendinitis. Clin. Rheumatol. 11, 382–384 (1992)CrossRefGoogle Scholar
  49. 49.
    Will, R.K., Ring, E.F.J., Clarke, A.K., Maddison, P.I.: Infrared thermography, what is its place in rheumatology in the 1990s. Br. J. Rheumatol. 31, 337–344 (1992)CrossRefGoogle Scholar
  50. 50.
    Antonio-Rubio, I., Madrid-Navarro, C.J., Salazar-Lopez, E., Perez-Navarro, M.J., Saez-Zea, C., Gomez-Milan, E., Mínguez-Castellanos, A., Escamilla-Sevilla, F.: Abnormal thermography in Parkinson’s disease. Parkinsonism Rel. Disord. 21, 852–857 (2015)CrossRefGoogle Scholar
  51. 51.
    Costello, J.T., McInerney, C.D., Bleakley, C.M., Selfe, J., Donnelly, A.E.: The use of thermal imaging in assessing skin temperature following cryotherapy: a review. J. Therm. Biol 37, 103–110 (2012)CrossRefGoogle Scholar
  52. 52.
    Bouzida, N., Bendada, A., Maldague, X.P.: Visualization of body thermoregulation by infrared imaging. J. Therm. Biol 34, 120–126 (2009)CrossRefGoogle Scholar
  53. 53.
    Tanda, G.: Skin temperature measurements by infrared thermography during running exercise. Exp. Therm. Fluid Sci. 71, 103–113 (2016)CrossRefGoogle Scholar
  54. 54.
    Milonov, O.B., Lebedeva, O.D., Pomelova, L.A.: The use of echography and thermography in patients with parasitic liver diseases. Sovet. Med. 4, 62–67 (1980)Google Scholar
  55. 55.
    Mansfield, C.M., Farrell, C., Asbell, S.O.: The use of Thermography in the detection of metastatic liver disease. Radiology 95, 696–698 (1970)CrossRefGoogle Scholar
  56. 56.
    Brooks, J.P., Perry, W.B., Putnam, A.T., Karulf, R.E.: Thermal imaging in the detection of bowel ischemia. Dis. Colon Rectum 43, 1319–1321 (2000)CrossRefGoogle Scholar
  57. 57.
    Fiz, J.A., Lozano, M., Monte-Morenoc, E., Gonzalez-Martinez, A., Faundez-Zanuy, M., Becker, C., Pons-Rodriguez, L., Manzanoa, J.R.: Tuberculine reaction measured by infrared thermography. Comput. Methods Programs Biomed. 122, 199–206 (2015)CrossRefGoogle Scholar
  58. 58.
    Kopsa, H., Czech, W., Schmidt, P., Zazgornik, J., Pils, P., Balcke, P.: Diagnostic relevance of contact thermography in renal transplantation (author’s translation). Med. Klin. 74, 1067–1070 (1979)Google Scholar
  59. 59.
    Kopsa, H., Czech, W., Schmidt, P., Zazgornik, J., Pils, P., Balcke, P.: Use of thermography in kidney transplantation: two year follow up study in 75 cases. Proc. Eur Dial Transplant Assoc. 16, 383–387 (1979)Google Scholar
  60. 60.
    Loriaux, C.: Role of thermography in gynecology. J. Radiol. Electrol. Med. Nucl., 56 (suppl.), 57–58 (1975)Google Scholar
  61. 61.
    Birnbaum, S.J., Kliot, D.: Thermography-obstetrical applications. Ann. N. Y. Acad. Sci. 121, 209–222 (1964)CrossRefGoogle Scholar
  62. 62.
    Topalidou, A., Downe, S.: Investigation of the use of thermography for research and clinical applications in pregnant women. Infrared Phys. Technol. 75, 59–64 (2016)CrossRefGoogle Scholar
  63. 63.
    Ernst, M., Lee, M.H.M.: Sympathetic vasomotor changes induced by manual and electrical acupuncture of the hoku point visualized by thermography. Pain 21, 25–33 (1985)CrossRefGoogle Scholar
  64. 64.
    Cattaneo, C., Giancamillo, A.D., Campari, O., Martrille, L., Jouineau, C.: Infrared tympanic thermography as a substitute for a probe in the evaluation of ear temperature for post-mortem interval determination: a pilot study. J. Forensic Leg. Med. 16, 215–217 (2009)CrossRefGoogle Scholar
  65. 65.
    Al-Alousi, L.M., Anderson, R.A., Worster, D.M., Land, D.D.: Multiple-probe thermography for estimating the postmortem interval: I. Continuous monitoring and data analysis of brain, liver, rectal and environmental temperatures in 117 forensic cases. J. Forensic. Sci. 46, 317–322 (2001)Google Scholar
  66. 66.
    Manginas, A., Andreanides, E., Leontiadis, E., Sfyrakis, P., Maounis, T., Degiannis, D., Alivizatos, P., Cokkinos, D.: Right Ventricular endocardial thermography in transplanted and coronary artery disease patients: first human application. J. Invasive Cardiol. 22, 400–404 (2010)Google Scholar
  67. 67.
    Salaimeh, A.A., Campion, J.J., Gharaibeh, B.Y., Evans, M.E., Saito, K.: Real-time quantification of viable bacteria in liquid medium using infrared thermography. Infrared Phys. Technol. 54, 517–524 (2011)CrossRefGoogle Scholar
  68. 68.
    Bagavathiappan, S., Philip, J., Jayakumar, T., Raj, B., Rao, P.N.S., Varalakshmi, M., Mohan, V.: Correlation between plantar foot temperature and diabetic neuropathy by using an infrared thermal imaging technique. J. Diab. Sci. Technol. 4, 1386–1392 (2010)CrossRefGoogle Scholar
  69. 69.
    Bharara, M., Cobb, J.E., Claremont, D.J.: Thermography and thermometry in the assessment of diabetic neuropathic foot: a case for furthering the role of thermal techniques. Int. J. Low. Extrem. Wounds 5, 250–260 (2006)CrossRefGoogle Scholar
  70. 70.
    Bharara, M., Schoess, J., Armstrong, D.G.: Coming events cast their shadows before: detecting inflammation in the acute diabetic foot and the foot in remission. Diabetes Metab. Res. Rev. 28(Suppl 1), 15–20 (2012)CrossRefGoogle Scholar
  71. 71.
    Armstrong, D.G., Lavery, L.A., Liswood, P.J., Todd, W.F., Tredwell, J.A.: Infrared dermal thermometry for the high-risk diabetic foot. Phys. Ther. 77, 169–175 (1997)CrossRefGoogle Scholar
  72. 72.
    Lavery, L.A., Higgins, K.R., Lanctot, D.R., Constantinides, G.P., Zamorano, R.G., Athanasiou, K.A., Armstrong, D.G., Agrawal, C.M.: Preventing diabetic foot ulcer recurrence in high-risk patients. Diabetes Care 30, 14–20 (2007)CrossRefGoogle Scholar
  73. 73.
    Benbow, S.J., Chan, A.W., Bowsher, D.R., Williams, G., Macfarlane, I.A.: The prediction of diabetic neuropathic plantar foot ulceration by liquid-crystal contact thermography. Diabetes Care 17, 835–839 (1994)CrossRefGoogle Scholar
  74. 74.
    Ring, F.: Thermal imaging today and its relevance to diabetes. J. Diab. Sci. Technol. 4, 857–862 (2010)CrossRefGoogle Scholar
  75. 75.
    Hosaki, Y., Mitsunobu, F., Ashida, K., Tsugeno, H., Okamoto, M., Nishida, N., Takata, S., Yokoi, T., Tanizaki, Y., Ochi, K., Tsuji, T.: Non-invasive study for peripheral circulation in patients with diabetes mellitus. In: Annual reports of Misasa Medical Branch, Okayama University Medical School, Tottori Japan, vol. 72, pp. 31–37 (2002)Google Scholar
  76. 76.
    Bagavathiappan, S., Saravanan, T., Philip, J., Jayakumar, T., Raj, B., Karunanithi, R., Panicker, T., Korath, M.P., Jagadeesan, K.: Infrared thermal imaging for detection of peripheral vascular disorders. J. Med. Phys. 34, 43–47 (2009)CrossRefGoogle Scholar
  77. 77.
    Bagavathiappan, S., Saravanan, T., Philip, J., Jayakumar, T., Raj, B., Karunanithi, R., Panicker, T.M., Korath, P., Jagadeesan, K.: Investigation of peripheral vascular disorders using thermal imaging. Br. J. Diabetes Vasc. Dis. 8, 102–104 (2008)CrossRefGoogle Scholar
  78. 78.
    Ammer, K.: Published papers on thermology or temperature measurement between 1989 and 2003. http://www.lla.if.sc.usp.br/art/public1989-2003.pdf
  79. 79.
    Ammer, K.: Thermology on the internet—An update. Thermol. Int. 19, 15–28 (2009)Google Scholar
  80. 80.
  81. 81.
    International Diabetes Federation: IDF diabetes atlas, 7th edn (2016). http://www.diabetesatlas.org/. Accessed on 24/05/2016
  82. 82.
    Reiber, G.E., Lipsky, B.A., Gibbons, G.W.: The burden of diabetic foot ulcers. Am. J. Surg. 176, 5S–10S (1998)CrossRefGoogle Scholar
  83. 83.
    Steketee, J.: Spectral emissivity of the skin and pericardium. Phys. Med. Biol. 18, 686–694 (1973)CrossRefGoogle Scholar
  84. 84.
    Webb, S.: The Physics of Medical Imaging, 1st edn. Institute of Physics Publishing, Bristol (1988)CrossRefGoogle Scholar
  85. 85.
    Clark, J.A.: Effects of surface emissivity and viewing angle on errors in thermography. Acta Thermogr. 1, 138–141 (1976)Google Scholar
  86. 86.
    Watmough, D.J., Fowler, P.W., Oliver, R.: The thermal scanning of a curved isothermal surface. Phys. Med. Biol. 15, 1–8 (1970)CrossRefGoogle Scholar
  87. 87.
    FLIR: FLIR Silver SC5000 MWIR (2009). http://www.flir.com/assets/e9d4e1d5563e4a54a7f220d7904e232e.pdf. Accessed on 6/6/2016
  88. 88.
    Bertelsmann, F.W., Heismann, J.J., Weber, E.J., van der Veen, E.A., Schouten, J.A.: Thermal discrimination thresholds in normal subjects and in patients with diabetic neuropathy. J. Neurol. Neurosurg. Psychiatr. 48, 686–690 (1985)Google Scholar
  89. 89.
    Viswanathan, V., Snehalata, C., Seena, R., Ramachandran, A.: Early recognition of diabetic neuropathy: evaluation of a simple outpatient procedure using thermal perception. Postgrad. Med. J. 78, 541–542 (2002)CrossRefGoogle Scholar
  90. 90.
    Liniger, C., Albeanu, A., Moody, J., Richez, J., Bloise, D., Assal, J.: The Thermocross: a simple tool for rapid assessment of thermal sensation thresholds. Diabetes Res. Clin. Pract. 12, 25–34 (1991)CrossRefGoogle Scholar
  91. 91.
    Kelechi, T., Michel, Y., Wiseman, J.: Are infrared and thermistor thermometers interchangeable for measuring localized skin temperature? J. Nurs. Meas. 14, 19–30 (2006)CrossRefGoogle Scholar
  92. 92.
    Anbar, M.: Clinical thermal imaging today. IEEE Eng. Med. Biol. Mag. 17, 25–33 (1998)CrossRefGoogle Scholar
  93. 93.
    Roback, K., Johansson, M., Starkhammar, A.: Feasibility of a thermographic method for early detection of foot disorders in diabetes. Diabetes Technol. Ther. 11, 663–667 (2009)CrossRefGoogle Scholar
  94. 94.
    Frykberg, R.G., Tallis, A., Tierney, E.: Diabetic foot self examination with the TempstatTM as an integral component of a comprehensive prevention program. J. Diab. Foot Complicat. 1, 13–18 (2009)Google Scholar
  95. 95.
    Piotr, F., Piotr, L., Jan M.W., Martin, B., Julius, G., Karolina, M.-M., Maria, M., Stanislawa, S., Anna, C.: Continuous monitoring of feet temperature using a data logger with wireless communication. Biocybern. Biomed. Eng. 32, 59–64 (2012)Google Scholar
  96. 96.
    Mansfield, J.R., Sowa, M.G., Payette, J.R., Abdulrauf, B., Stranc, M.F., Mantsch, H.H.: Tissue viability by multispectral near infrared imaging: a fuzzy C-means clustering analysis. IEEE Trans. On Med. Imaging 17, 1011–1018 (1998)CrossRefGoogle Scholar
  97. 97.
    Jones, D.P.: Biomedical Sensors. Momentum Press, New York (2010)Google Scholar
  98. 98.
    Zhang, Z.M., Tsai, B.K., Machin, G.: Radiometric Temperature Measurements. Academic Press, Oxford (2010)Google Scholar
  99. 99.
    Diakides, N.A.: New developments in low cost infrared imaging system. Eur. J. Thermol 7, 213–215 (1997)Google Scholar
  100. 100.
    Ring, E.F.J.: High resolution infrared imaging. Eur. J. Thermol. 8, 121 (1998)Google Scholar
  101. 101.
    Branemark, P.I., Fagerberg, S., Langer, L., Soderbergh, J.S.: Infrared thermography in diabetes mellitus. Diabetologia 3, 529–532 (1967)CrossRefGoogle Scholar
  102. 102.
  103. 103.
    Sun, P., Lin, H., Jao, S.E., Ku, Y., Chan, R., Cheng, C.: Relationship of skin temperature to sympathetic dysfunction in diabetic at-risk feet. Diabetes Res. Clin. Pract. 73, 41–46 (2006)CrossRefGoogle Scholar
  104. 104.
    Anburajan, M., Sivanandam, S., Bidyarasmi, S., Venkatraman, B., Menaka, M., Raj, B.: Changes of skin temperature of parts of the body and serum asymmetric dimethylarginine (ADMA) in type-2 diabetes mellitus Indian patients. In: 33rd Annual International Conference of the IEEE EMBS, Boston, Massachusetts, USA, pp. 6254–6259 (2011)Google Scholar
  105. 105.
    Huang, C.-L., Wu, Y.-W., Hwang, C.-L., Jong, Y.-S., Chao, C.-L., Chen, W.-J., Wu, Y.-T., Yang, W.-S.: The application of infrared thermography in evaluation of patients at high risk for lower extremity peripheral arterial disease. J. Vasc. Surg. 54, 1074–1080 (2011)CrossRefGoogle Scholar
  106. 106.
    Szentkuti, A., Kavanagh, H.S., Grazio, S.: Infrared thermography and image analysis for biomedical use. Period. Biol. 113, 385–392 (2011)Google Scholar
  107. 107.
    Balbinot, L.F., Canani, L.H., Robinson, C.C., Achaval, M., Zaro, M.A.: Plantar thermography is useful in the early diagnosis of diabetic neuropathy. Clinics 67, 1419–1425 (2012)CrossRefGoogle Scholar
  108. 108.
    Balbinot, L.F., Robinson, C.C., Achaval, M., Zaro, M.A., Brioschi, M.L.: Repeatability of infrared plantar thermography in diabetes patients: a pilot study. J. Diab. Sci. Technol. 7, 1130–1137 (2013)CrossRefGoogle Scholar
  109. 109.
    Mori, T., Nagase, T., Takehara, K., Oe, M., Ohashi, Y., Amemiya, A., Noguchi, H., Ueki, K., Kadowaki, T., Sanada, H.: Morphological pattern classification system for plantar thermography of patients with diabetes. J. Diab. Sci. Technol. 7, 1102–1112 (2013)CrossRefGoogle Scholar
  110. 110.
    van Netten, J.J., van Baal, J.G., Liu, C., van der Heijden, F., Bus, S.A.: Infrared thermal imaging for automated detection of diabetic foot complications. J. Diab. Sci. Technol. 7, 1122–1129 (2013)Google Scholar
  111. 111.
    Oe, M., Yotsu, R.R., Sanada, H., Nagase, T., Tamaki, T.: Screening for osteomyelitis using thermography in patients with diabetic foot. Ulcers, 2013 (2013)Google Scholar
  112. 112.
    Bandyopadhyay, A., Mondal, H.S., Chaudhuri, A.: Thermal imaging based diabetes screening using medical image processing techniques. Int. J. Eng. Res. Technol. 3, 1298–1302 (2014)Google Scholar
  113. 113.
    Yavuz, M., Brem, R.W., Davis, B.L., Patel, J., Osbourne, A., Matassinie, M.R., Wood, D.A., Nwokolo, I.O.: Temperature as a predictive tool for plantar triaxial loading. J. Biomech. 47, 3767–3770 (2014)CrossRefGoogle Scholar
  114. 114.
    Gatt, A., Formosa, C., Cassar, K., Camilleri, K.P., Raffaele, C.D., Mizzi, A., Azzopardi, C., Mizzi, S., Falzon, O., Cristina, S., Chockalingam, N.: Thermographic patterns of the upper and lower limbs: baseline data. Int. J. Vasc. Med., 2015 (2015)Google Scholar
  115. 115.
    Clark, R.P., de Calcina-Goff, M.L.: International standardization in medical thermography. In: 18th International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam, the Netherlands (1996)Google Scholar
  116. 116.
    Ring, E.F.J., Ammer, K.: The technique of infra red imaging in medicine. Thermol. Int. 10, 7–14 (2000)Google Scholar
  117. 117.
    Standards Technical Reference for Thermal Imagers for Human Temperature Screening Part 1: Requirements and Test Methods, TR 15–1, Spring Singapore (2003)Google Scholar
  118. 118.
    Standards Technical Reference for Thermal Imagers for Human Temperature Screening Part 2: Users’ implementation guidelines, TR 15–2, Spring Singapore (2004)Google Scholar
  119. 119.
    Boyko, E.J., Ahroni, J.H., Stensel, V.L.: Skin temperature in the neuropathic diabetic foot. J. Diabetes Complications 15, 260–264 (2001)CrossRefGoogle Scholar
  120. 120.
    Cheng, K.-S., Yang, J.-S., Wang, M.-S., Pan, S.-C.: The application of thermal image analysis to diabetic foot diagnosis. J. Med. Biol. Eng. 22, 75–82 (2002)Google Scholar
  121. 121.
    Marins, J.C.B., Moreira, D.G., Cano, S.P., Quintana, M.S., Soares, D.D., da Fernandes, A.A., dos Silva, F.S., Costa, C.M.A., dos Amorim, P.R.S.: Time required to stabilize thermographic images at rest. Infrared Phys. Technol. 65, 30–35 (2014)Google Scholar
  122. 122.
    Kingma, B.R., Frijns, A.J., Schellen, L., van Lichtenbelt, W.D.M.: Beyond the classic thermoneutral zone. Temperature, 1, 10–17 (2014)Google Scholar
  123. 123.
    Pagano, M., Gauvreau, K.: Principles of Biostatistics, 3rd edn. Duxbury Press (1994)Google Scholar
  124. 124.
    Rajic, N.: Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite structures. Compos. Struct. 58, 521–528 (2002)CrossRefGoogle Scholar
  125. 125.
    Brioschi, M.L., Colman, D., Neto, H.M.: Fusing IR and magnetic resonance (MR) image. J. Korean Med. Thermol. 2, 57–58 (2002)Google Scholar
  126. 126.
    Paul, J.L., Lupo, J.C.: From tanks to tumors. IEEE Eng. Med. Biol. Mag. 21, 34–35 (2002)CrossRefGoogle Scholar
  127. 127.
    Irvine, J.M.: Targeting breast cancer detection with military technology. IEEE Eng. Med. Biol. Mag. 21, 36–40 (2002)CrossRefGoogle Scholar
  128. 128.
    Liu, C., van Netten, J.J., van Baal, J.G., Bus, J.G., van der Heijden, F.: Automatic detection of diabetic foot complications with infrared thermography by asymmetric analysis. J. Biomed. Opt. 20, 26003 (2015)Google Scholar
  129. 129.
    Hernandez-Contreras, D., Peregrina-Barreto, H., Rangel-Magdaleno, J., Ramirez-Cortes, J., Renero-Carrillo, F.: Automatic classification of thermal patterns in diabetic foot based on morphological pattern spectrum. Infrared Phys. Technol. 73, 149–157 (2015)CrossRefGoogle Scholar
  130. 130.
    Taylor, G.I., Palmer, J.H.: The vascular territories (angiosomes) of the body: experimental study and clinical applications. Br. J. Plast. Surg. 40, 113–141 (1987)CrossRefGoogle Scholar
  131. 131.
    Attinger, C.E., Evans, K.K., Bulan, E., Blume, P., Cooper, P.: Angiosomes of the foot and ankle and clinical implications of limb salvage: reconstruction, incisions, and revascularization. Plast. Reconstr. Surg. 117, 261S–293S (2006)CrossRefGoogle Scholar
  132. 132.
    Plassmann, P., Ring, E.F.J.: An open system for the acquisition and evaluation of medical thermological images. Eur. J. Thermol. 7, 216–220 (1997)Google Scholar
  133. 133.
    Plassmann, P., Murawski, P.: CTHERM for standardized thermography. In: 9th European Congress of Medical Thermology, Krakow, Poland (2003)Google Scholar
  134. 134.
    Jones, C., Ring, E., Plassmann, P., Ammer, K., Wiecek, B.: Standardization of infrared imaging: a reference atlas for clinical thermography-initial results. Thermol. Int. 15, 157 (2005)Google Scholar
  135. 135.
    Ring, E.F.J., Ammer, K., Wiecek, B., Plassmann, P.: Technical challenges for the construction of a medical IR digital image database. In: Chatard, J.P., Dennis, P.N.J. (Eds.) Proceedings of SPIE, Detectors and Associated Signal Processing II, pp. 191–198 (2005)Google Scholar
  136. 136.
    Fujimasa, I., Saito, I., Chinzei, T.: Far infrared medical image database on the world wide web. In: Proceedings of 19th International Conference IEEE/EMBS, Chicago, IL, pp. 652–653 (1997)Google Scholar
  137. 137.
    Ring, E.F.J., Ammer, K., Jung, A., Murawski, P., Wiecek, P., Zuber, J., Plassmann, P., Jones, C.D.: Standardization of thermal imaging. The Anglo-Polish reference database. In: 10th Congress of the European Association of Thermology, Zakopane, Poland (2006)Google Scholar
  138. 138.
    Colantonio, S., Pieri, G., Salvetti, O., Benvenuti, M., Barone, S., Carassale, L.: A method to integrate thermographic data and 3D shapes for diabetic foot disease. In: Proceedings of the 8th International Conference on Quantitative Infrared Thermography (QIRT 2006) ITC-CNR, Padova, Italy (2006)Google Scholar
  139. 139.
    Boulton, A.J.: The diabetic foot. Medicine 43, 33–37 (2014)CrossRefGoogle Scholar
  140. 140.
    Ahmad, J.: The diabetic foot. Diabetes Metab. Syndr. Clin. Res. Rev. 10, 48–60 (2016)CrossRefGoogle Scholar
  141. 141.
    Mayfield, J.A., Reiber, G.E., Sanders, L.J., Janisse, D., Pogach, L.M.: Preventive foot care in people with diabetes. Diabetes Care 21, 2161–2177 (1998)CrossRefGoogle Scholar
  142. 142.
    Zubair, M., Malik, A., Ahmad, J.: Clinico-microbial study and anti-microbial drug resistance profile of diabetic foot infections in North India. Foot 21, 6–14 (2011)CrossRefGoogle Scholar
  143. 143.
    Young, M.J., Boulton, A.J., MacLeod, A.F., Williams, D.R., Sonksen, P.H.: A multicentric study of the prevalence of diabetic peripheral neuropathy in the United Kingdom hospital clinic population. Diabetelogia 36, 150–154 (1993)CrossRefGoogle Scholar
  144. 144.
    Zubair, M., Malik, A., Ahmad, J.: Study of plasmid-mediated extended-spectrum β-lactamase-producing strains of enterobacteriaceae, isolated from diabetic foot infections in a North Indian tertiary-care hospital. Diabetes Technol. Ther. 14, 315–324 (2012)CrossRefGoogle Scholar
  145. 145.
    Watkins, P.J.: The diabetic foot. Br. Med. J. 326, 977–979 (2003)CrossRefGoogle Scholar
  146. 146.
    Springett, K., White, R.J.: Skin changes in the at risk foot and their treatment. Br. J. Community Nurs. 12, 25–32 (2002)CrossRefGoogle Scholar
  147. 147.
    Shahani, B.T., Halperin, J.J., Boulu, P., Cohen, J.: Sympathetic skin response—A method of assessing unmyelinated axon dysfunction in peripheral neuropathis. J. Neurol. Neusurg. Psychiatry 47, 536–542 (1984)CrossRefGoogle Scholar
  148. 148.
    Uccioli, L., Mancini, L., Giordano, A., Solini, A., Magnani, P., Manto, A., Controneo, P., Greco, A.V., Ghirlanda, G.: Lower limb arterio-venus shunts, autonomic neuropathy and diabetic foot. Diabetes Res. Clin. Pract. 16, 123–130 (1992)CrossRefGoogle Scholar
  149. 149.
    Flynn, M.D., Tooke, J.E.: Diabetic neuropathy and micro-circulation. Diabet. Med. 12, 298–301 (1995)CrossRefGoogle Scholar
  150. 150.
    Kimura, J.: Principles and variation of nerve conduction studies. In: Electrodiagnosis in Diseases of Nerve and Muscle: Principles and Practice, pp. 91–129. Oxford University Press, New York (2001)Google Scholar
  151. 151.
    Tack, C.J. ,van Gurp, P.J., Holmes, C., Goldstein, D.S.: Local sympathetic denervation in painful diabetic neuropathy. Diabetes, 51: 3545–3553 (2002)Google Scholar
  152. 152.
    Harding, J.R., Wertheim, D.F., Williams, R.J., Melhuish, J.M., Banerjee, D., Harding, K.G.: Infrared imaging in diabetic foot ulceration. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Volume: 2) Hong Kong, pp. 916–918 (1998)Google Scholar
  153. 153.
    Vinik, A.I., Erbas, T., Park, T.S., Pierce, K.K., Stansberry, K.B.: Methods for evaluation of peripheral neurovascular dysfunction. Diabetes Technol. Ther. 3, 29–50 (2001)CrossRefGoogle Scholar
  154. 154.
    Papanas, N., Papatheodorou, K., Papazoglou, D., Kotsiou, S., Maltezos, E.: Association between foot temperature and sudomotor dysfunction in type 2 diabetes. J. Diab. Sci. Technol. 4, 803–807 (2010)CrossRefGoogle Scholar
  155. 155.
    Vinik, A.I., Erbas, T., Park, T.S., Stansberry, K.B., Scanelli, J.A., Pittenger, G.L.: Dermal neurovascular dysfunction in type 2 diabetes. Diabetes Care 24, 1468–1475 (2001)CrossRefGoogle Scholar
  156. 156.
    Sivanandam, S., Anburajan, M., Venkatraman, B., Menaka, M., Sharath, D.: Medical thermography: a diagnostic approach for type 2 diabetes based on non-contact infrared thermal imaging. Endocrine 42, 343–351 (2012)CrossRefGoogle Scholar
  157. 157.
    Chan, A.W., Macfarlane, I.A., Bowsher, D.R.: Contact thermography of painful diabetic neuropathic foot. Diabetes Care 14, 918–922 (1991)CrossRefGoogle Scholar
  158. 158.
    Stess, R.M., Sisney, P.C., Moss, K.M., Graf, P.M., Louie, K.S., Gooding, G.A., Grunfeld, C.: Use of liquid crystal thermography in the evaluation of the diabetic foot. Diabetes Care 9, 267–272 (1986)CrossRefGoogle Scholar
  159. 159.
    Fujiwara, Y., Inukai, T., Aso, Y., Takemura, Y.: Thermographic measurement of skin temperature recovery tim of extremities in patients with type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 108, 463–469 (2000)CrossRefGoogle Scholar
  160. 160.
    Nishide, K., Nagase, T., Oba, M., Oe, M., Ohashi, Y., Iizaka, S., Nakagami, G., Kadowaki, T., Sanada, H.: Ultrasonographic and thermographic screening for latent inflammation in diabetic foot callus. Diabetes Res. Clin. Pract. 85, 304–309 (2009)CrossRefGoogle Scholar
  161. 161.
    Kanazawa, T., Nakagami, G., Goto, T., Noguchi, H., Oe, M., Miyagaki, T., Hayashi, A., Sasaki, S., Sanada, H.: Use of smartphone attached mobile thermography assessing subclinical inflammation: a pilot study. J. Wound Care 25, 177–182 (2016)CrossRefGoogle Scholar
  162. 162.
    Hazenberg, C.E.V.B., van Netten, J.J., van Baal, S.G., Bus, S.A.: Assessment of signs of foot infection in diabetes patients using photographic foot imaging and infrared thermography. Diabetes Technol. Ther. 16: 370–377 (2014)Google Scholar
  163. 163.
    Skversky, N.J., Herring, A.B., Baron, R.C.: Thermography in peripheral vascular diseases. Ann. N. Y. Acad. Sci. 121, 118–134 (1964)CrossRefGoogle Scholar
  164. 164.
    Winsor, T., Bendezu, J.: Thermography and the peripheral circulation. Ann. N. Y. Acad. Sci. 121, 135–156 (1964)CrossRefGoogle Scholar
  165. 165.
    Robins, B., Bernstein, A.: Comparative studies of digital plethysmography and infrared thermography in peripheral vascular disease. Angiology 21, 349–354 (1970)CrossRefGoogle Scholar
  166. 166.
    Langer, L., Fagerberg, S.E., Johnsen, C.: Peripheral circulation in diabetes mellitus—a study with infrared thermography. Acta Med. Scand. 191, 17–20 (1972)Google Scholar
  167. 167.
    Soulen, R.L., Lapayowker, M.S., Tyson, R.R., Korangy, A.A.: Angiography, ultrasound, and thermography in the study of peripheral vascular disease. Radiology 105 (1972)Google Scholar
  168. 168.
    Holm, J., Johnsen, C., Schersten, T.: Thermography in vascular surgery. A preliminary report based on a study in 12 cases. Acta Chir. Scand. 140, 445–448 (1974)Google Scholar
  169. 169.
    Henderson, H.P., Hackett, M.E.J.: The value of thermography in peripheral vascular disease. Angiology 29, 65–75 (1978)CrossRefGoogle Scholar
  170. 170.
    Hitoi, A., Matsuoka, A.: patho-physiological analysis on peripheral circulation using thermography as an example of functional body imaging japan. J. Clinical Pathology 38, 1119–1125 (1990)Google Scholar
  171. 171.
    Fushimi, H., Inoue, T., Yamada, Y., Matsuyama, Y., Kubo, M., Kameyama, M.: Abnormal vaso reaction of peripheral arteries to cold stimulus of both hands in diabetics. Diabetes Res. Clin. Pract. 32, 55–59 (1996)CrossRefGoogle Scholar
  172. 172.
    Mitchell, W.S., Winocour, P.H., Gush, R.J., Taylor, L.J., Baker, R.D., Anderson, D.C., Jayson, M.I.: Skin blood flow and limited joint mobility in insulin-dependent diabetes mellitus. Br. J. Rheumatol. 28, 195–200 (1989)CrossRefGoogle Scholar
  173. 173.
    Toutouzas, K., Benetos, G., Drakopoulou, M., Bounas, P., Tsekoura, D., Stathogiannis, K., Koutagiar, I., Aggeli, C., Karanasos, A., Panagiotakos, D., Siores, E., Stefanadis, C.: Insights from a thermography-based method suggesting higher carotid inflammation in patients with diabetes mellitus and coronary artery disease. Diabetes Metab. 40, 431–438 (2014)CrossRefGoogle Scholar
  174. 174.
    Uchikawa, T., Murakami, T., Furukawa, H.: Effects of the anti-platelet agent cilostazol on peripheral vascular disease in patients with diabetes mellitus. Arzneimittelforschung 42, 322–324 (1992)Google Scholar
  175. 175.
    Ohashi, S., Iwatani, M., Hyakuna, Y., Morioka, Y.: Thermographic evaluation of the hemodynamic effect of the antithrombotic drug cilostazol in peripheral arterial occlusion. Arzneimittelforschung 35, 1203–1208 (1985)Google Scholar
  176. 176.
    Staffa, E., Bernard, V., Kubicek, L., Vlachovsky, R., Vlk, D., Mornstein, V., Staffa, R.: Using noncontact infrared thermography for long-term monitoring of foot temperatures in a patient with diabetes mellitus. Ostomy Wound Manag. 62, 54–61 (2016)Google Scholar
  177. 177.
    Sommer, T.C., Lee, T.H.: Charcot foot: the diagnostic dilemma. Am. Fam. Physician 64, 1591–1598 (2001)Google Scholar
  178. 178.
    Mercer, J.B., Nielsen, S.P., Hoffmann, G.: Improvement of wound healing by water-filtered infrared-A (wIRA) in patients with chronic venous stasis ulcers of the lower legs including evaluation using infrared thermography. Ger. Med. Sci. 6, 1–26 (2008)Google Scholar
  179. 179.
    Sodi, A., Giambene, B., Miranda, P., Falaschi, G., Corvi, A., Menchini, U.: Ocular surface temperature in diabetic retinopathy: a pilot study by infrared thermography. Eur. J. Ophthalmol. 19, 1004–1008 (2009)Google Scholar
  180. 180.
    Sejling, A.S., Lange, K.H., Frandsen, C.S., Diemar, S.S., Tarnow, L., Faber, J., Holst, J.J., Hartmann, B., Hilsted, L., Kjaer, T.W., Juhl, C.B., Thorsteinsson, B., Pedersen-Bjergaard, U.: Infrared thermographic assessment of changes in skin temperature during hypoglycaemia in patients with type 1 diabetes. Diabetologia 58, 1898–1906 (2015)CrossRefGoogle Scholar
  181. 181.
    Zotter, H., Kerbl, R., Gallistl, S., Nitsche, H., Borkenstein, M.: Rewarming index of the lower leg assessed by infrared thermography in adolescents with type 1 diabetes mellitus. J. Pediatr. Endocrinol. Metab. 16, 1257–1262 (2003)CrossRefGoogle Scholar
  182. 182.
    Sejling, A.S., Lange, K.H.W., Frandsen, C.S.S., Diemar, S.S., Tarnow, L., Faber, J., Kjaer, T.W., Juhl, C.B., Thorsteinsson, B., Pedersen-Bjergaard, U.: Facial skin temperature measured by infrared thermography during hypoglycaemia in patients with longstanding type 1 diabetes. Diabetologia 57, S260–S260 (2014)CrossRefGoogle Scholar
  183. 183.
    Schindl, A., Heinze, G., Schindl, M., Pernerstorfer-Schon, H., Schindl, L.: Systematic effects of low-intensity laser irradiation on skin microcirculation in patients with diabetic microangiopathy. Microvasc. Res. 64, 240–246 (2002)CrossRefGoogle Scholar
  184. 184.
    Schindl, A., Schindl, M., Schon, H., Knobler, R., Havelec, L., Schindl, L.: Low-intensity laser irradiation improves skin circulation in patients with diabetic microangiopathy. Diabetes Care 21, 580–584 (1998)CrossRefGoogle Scholar
  185. 185.
    Armstrong, D.G., Holtz-Neiderer, K., Wendel, C., Mohler, M.J., Kimbriel, H.R., Lavery, L.A.: Skin temperature monitoring reduces the risk for diabetic foot ulceration in high-risk patients. Am. J. Med. 120, 1042–1046 (2007)CrossRefGoogle Scholar
  186. 186.
    Bharara, M., Fitzgerald, R., Rilo, H.R., Armstrong, D.G.: Practical thermal monitoring solutions: empowering diabetic foot care teams for prevention of lower extremity complications. Can. J. Diabetes 33, 217–218 (2009)CrossRefGoogle Scholar
  187. 187.
    Pafili, K., Papanas, N.: Thermographyin the follow up of the diabetic foot: best to weigh the enemy more mighty than he seems. Expert Rev. Med. Devices 12, 131–133 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • B. B. Lahiri
    • 1
  • S. Bagavathiappan
    • 1
  • Baldev Raj
    • 2
  • John Philip
    • 1
    Email author
  1. 1.Non-Destructive Evaluation Division, Radiography and Thermography Section, Metallurgy and Materials GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.National Institute of Advanced StudiesIndian Institute of Science CampusBangaloreIndia

Personalised recommendations