Skip to main content

Dynamic Angiothermography (DATG)

  • Chapter
  • First Online:
Application of Infrared to Biomedical Sciences

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 1269 Accesses

Abstract

Dynamic Angiothermography (DATG) is a noninvasive technique for the diagnosis of breast cancer . The instrument consists of a thin plate with liquid crystals that changes color due to a change in temperature, consequently offering an image of breast vasculature . DATG is based on the angiogenesis theory on tumor initiation, development, and growth. A tumor needs new vessels. Therefore, by studying the changes in the pattern of vascular blood supply, it is also possible to diagnose neoplasms very early. In particular, it is shown that every human being has his or her own vascular pattern which, in the absence of disease, does not vary throughout the life time. By repeating DATG periodically, an efficient control of the onset of disease is possible, even in its early stages. This is not new but still little-known technique which is a component of the overall diagnostic techniques for the study and prevention of breast cancer that serves to offer a complete clinical picture of the patient. The great advantages of DATG are: it does not use radiation; it is not invasive or painful; it is low-cost and can be repeated periodically and successfully with no drawbacks. The angiothermographic examination thus makes it possible to visualize the breast vascularity pattern without using contrast medium. On the other hand, while highlighting changes in mammary vascularization, DATG is not able to indicate the size or depth of the tumor; even if recent researches (based on the approximated solution of the inverse Fourier heat equation) show the possibility to evaluate the depth of the tumor. This paper, after the introduction in Sect. 1, starts with a description of historical context in Sect. 2, and outlines the instrumentation in Sect. 3. Section 4 describes the technique, while a comparison with other diagnostic techniques is provided in Sect. 5. To close, Sect. 6 offers a practical guide on the use of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mathers, C., Fat, D.M., Boerma, J.T.: The global burden of disease: 2004 update. World Health Organization. Available http://www.who.int/healthinfo/global_burden_disease/2004_report_update/en/ (2008). Accessed 24 June 2016

  2. Torre, L.A., Bray, F., Siegel, R.L., et al.: Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015). doi:10.3322/caac.21262

    Article  Google Scholar 

  3. Pediconi, F., Catalano, C., Roselli, A., et al.: The challenge of imaging dense breast parenchyma: is magnetic resonance mammography the technique of choice? A comparative study with x-ray mammography and whole-breast ultrasound. Invest. Radiol. 44, 412–421 (2009). doi:10.1097/RLI.0b013e3181a53654

    Article  Google Scholar 

  4. Pinsky, R.W., Helvie, M.A.: Role of screening mammography in early detection/outcome of breast cancer. Ductal Carcinoma Situ Microinvasive/Borderline Breast Cancer, pp. 13–26. Springer, New York (2015)

    Chapter  Google Scholar 

  5. Drukteinis, J.S., Mooney, B.P., Flowers, C.I., Gatenby, R.A.: Beyond Mammography: New Frontiers in Breast Cancer Screening. Am. J. Med. 126, 472–479 (2013). doi:10.1016/j.amjmed.2012.11.025

    Article  Google Scholar 

  6. Sree, S.V., Ng, E.Y.K., Acharya, U., Tan, W.: Breast imaging systems: a review and comparative study. J. Mech. Med. Biol. 10, 5–34 (2010). doi:10.1142/S0219519410003277

    Article  Google Scholar 

  7. Berg, W.A., Gutierrez, L., NessAiver, M.S., et al.: Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer 1. Radiology 233(3), 830–849 (2004)

    Article  Google Scholar 

  8. Sardanelli, F., Podo, F., Santoro, F., et al.: Multicenter surveillance of women at high genetic breast cancer risk using mammography, ultrasonography, and contrast-enhanced magnetic resonance imaging (the high breast cancer risk Italian 1 study): final results. Invest. Radiol. 46(2), 94–105 (2011)

    Article  Google Scholar 

  9. Montruccoli, G.C., Montruccoli Salmi, D., Casali, F.: A new type of breast contact thermography plate: a preliminary and qualitative investigation of its potentiality on phantoms. Phys. Medica XX(1), 27–31 (2004). doi:10.1400/19286

  10. Longatto Filho, A., Costa, S.M., Milanezi, F., et al.: Immunohistochemical expression of VEGF-A and its ligands in non-neoplastic lesions of the breast sampling-assisted by dynamic angiothermography. Oncol. Rep. 18(5), 1201–1206 (2007)

    Google Scholar 

  11. Cittadini, G.: Appendice 6: tra termografia e DITI. In: Edra (ed.) Diagnostica per immagini e radioterapia, pp. 1057–1065 (2015)

    Google Scholar 

  12. Ng, E.Y.-K.: A review of thermography as promising non-invasive detection modality for breast tumor. Int. J. Therm. Sci. 48, 849–859 (2009). doi:10.1016/j.ijthermalsci.2008.06.015

    Article  Google Scholar 

  13. Hankare, P., Shah, K., Nair, D., et al.: Breast cancer detection using thermography. Int. Res. J. Eng. Technol. 4(3), 2395–2356 (2016)

    Google Scholar 

  14. John, H.E., Niumsawatt, V., Rozen, W.M., et al.: Clinical applications of dynamic infrared thermography in plastic surgery: a systematic review. Gland Surg. 5, 122–132 (2016). doi:10.3978/j.issn.2227-684X.2015.11.07

    Google Scholar 

  15. Hanahan, D., Folkman, J.: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3), 353–364 (1996)

    Article  Google Scholar 

  16. Risau, W.: Mechanisms of angiogenesis. Nature 386(6626), 671–674 (1997)

    Article  Google Scholar 

  17. Naccarato, A.G., Viacava, P., Vignati, S., et al.: Bio-morphological events in the development of the human female mammary gland from fetal age to puberty. Virchows Arch. 436(5), 431–438 (2000)

    Article  Google Scholar 

  18. Andres, A.C., Djonov, V.: The mammary gland vasculature revisited. J. Mammary Gland Biol. Neoplasia 15(3), 319–328 (2010). doi:10.1007/s10911-010-9186-9

    Article  Google Scholar 

  19. Ando, Y., Fukatsu, H., Ishiguchi, T., et al.: Diagnostic utility of tumor vascularity on magnetic resonance imaging of the breast. Magn. Reson. Imaging 18(7), 807–813 (2000)

    Article  Google Scholar 

  20. Jesinger, R.A., Lattin, J.G.E., Ballard, E.A., et al.: Vascular abnormalities of the breast: arterial and venous disorders, vascular masses, and mimic lesions with radiologic-pathologic correlation. Radiographics 31(7), E117–E136 (2011)

    Article  Google Scholar 

  21. Rouvillois, C., Tricoire, J., Mariel, L., Portier, F.: Thermography using contact plates in the diagnosis of breast cancers. Chirurgie 99(11), 866–872 (1973)

    Google Scholar 

  22. Tricoire, J.: Study of breast cancer by means of liquid crystals thermography. J. Gynecol. Obstet. Biol. Reprod. (Paris) 4(SUPPL 2), 123–130 (1975)

    Google Scholar 

  23. Tricoire, J.: La thermografie en plaque. Technique nouvelle d’utilisation des cristaux liquides. Presse Med. 78(55), 2481–2482 (1970)

    Google Scholar 

  24. Head, J.F., Elliott, R.L.: Thermography. Cancer 79(1), 186–188 (1997)

    Article  Google Scholar 

  25. Nyirjesy, I.: Breast thermography. Clin. Obstet. Gynecol. 25(2), 401–408 (1982)

    Article  Google Scholar 

  26. Kennedy, D.A., Lee, T., Seely, D.: A comparative review of thermography as a breast cancer screening technique. Integr. Cancer Ther. 8(1), 9–16 (2009). doi:10.1177/1534735408326171

    Article  Google Scholar 

  27. Montruccoli, G.C., Montruccoli, D.S., D’Errico, A., et al.: Angiothermography in an integrated diagnosis for secondary prevention of breast cancer. In: Lancet Conference—The Challenge of Breast Cancer, Brugge, 21–22 April 1994, vol. 49. The Lancet: London (1994)

    Google Scholar 

  28. Montruccoli, D., Casali, F., Schmitt, F.C., et al.: New advances in treatment of breast cancer. In: Proceedings of XVIII FIGO World Congress of Gynecology and Obstetrics; Kuala-Lumpur Malesia, 5–19 Nov 2006

    Google Scholar 

  29. Montruccoli, G.C., Montruccoli, D., Casali, F., et al.: Clinical application of a new thermographic plate: histophathological findings of 1027 breast lesions. In: 95th AACR Annual Meeting, March 27–31, Orlando, Florida, US. Cancer Res 64(7), 215 (2004)

    Google Scholar 

  30. Montruccoli-Salmi, D., Casali, F., Draetta, F.G., et al.: Dynamic angiothermography a new functional technique in breast imaging, useful in gynecological practice. In: Abstracts of XX FIGO World Congress of Gynecology and Obstetrics, October 2012, Int J Gynecol Obstet 119(3):S642–S643 (2012)

    Google Scholar 

  31. Breast Life S.r.l.—Piazza San Martino, 1 40126 Bologna, Italy. http://www.breastlife.it/. Accessed 24 June 2016

  32. Faust, O., Acharya, U.R., Ng, E.Y.K., et al.: Application of infrared thermography in computer aided diagnosis. Infrared Phys. Technol. 66, 160–175 (2014). doi:10.1016/j.infrared.2014.06.001

    Article  Google Scholar 

  33. Montruccoli, G.C., Montruccoli-Salmi, D., Barnabe, D., et al.: Early diagnosis of breast cancer by dynamic angiothermography. In: Taylor & Francis (ed.) Gynecology and obstetrics; New insights in gynecology & obstetrics research and practice. Parthenon Pub. Group, New York, London, pp. 296–300. ISBN 1850709661 (1998)

    Google Scholar 

  34. Montruccoli, G.C., Montruccoli-Salmi, D., Barnabe, D.: Value of functional blood supply pattern analysis in the detection of early breast cancer. Int. J. Gynecol. Obstet. 70(5), E15 (2000). doi:10.1016/S0020-7292(00)82366-8

    Article  Google Scholar 

  35. Montruccoli, G.C., Montruccoli-Salmi, D.: L’angiotermografia dinamica nella diagnosi senologica. In: Cosmi, E.V., Pinotti, J.A. (eds.) Neoplasie della Mammella – Dalla diagnosi al trattamento. SEE Editrice, Florence, pp. 205–218. ISBN 8884650151, 9788884650153 (2006)

    Google Scholar 

  36. Biller-Andorno, N., Jüni, P.: Abolishing mammography screening programs? A view from the Swiss Medical Board. N. Engl. J. Med. 370(21), 1965–1967 (2014). doi:10.1056/NEJMp1401875

    Article  Google Scholar 

  37. Miller, A.B., Wall, C., Baines, C.J., et al.: Twenty five year follow-up for breast cancer incidence and mortality of the Canadian National Breast Screening Study: randomized screening trial. BMJ 348, g366 (2014). doi:10.1136/bmj.g366

    Article  Google Scholar 

  38. Lewin, J.M., Isaacs, P.K., Vance, V., et al.: Dual-energy contrast-enhanced digital subtraction mammography: feasibility. Radiology 229(1), 261–268 (2003)

    Article  Google Scholar 

  39. Boone, J.M., Kwan, A.L., Yang, K., et al.: Computed tomography for imaging the breast. J. Mammary Gland Biol. 11(2), 103–111 (2006)

    Article  Google Scholar 

  40. Xia, Q.: Dedicated computed tomography of the breast: image processing and its impact on breast mass detectability. ProQuest, Duke University. ISBN 0549663193, 9780549663195 (2007)

    Google Scholar 

  41. Ciatto, S., Houssami, N., Bernardi, D., et al.: Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study. Lancet Oncol. 14(7), 583–589 (2013). doi:10.1016/S1470-2045(13)70134-7

    Article  Google Scholar 

  42. Sechopoulos, I.: A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications. Med. Phys. 40(1), 014302 (2013). doi:10.1118/1.4770281

    Article  Google Scholar 

  43. Berrington de González, A., Reeves, G.: Mammographic screening before age 50 years in the UK: comparison of the radiation risks with the mortality benefits. Br. J. Cancer 93(5), 590–596 (2005)

    Article  Google Scholar 

  44. Yaffe, M.J., Mainprize, J.G.: Risk of radiation-induced breast cancer from mammographic screening. Radiology 258(1), 98–105 (2011). doi:10.1148/radiol.10100655

    Article  Google Scholar 

  45. Choi, B.B., Kim, S.H., Park, C.S., et al.: Radiologic findings of lobular carcinoma in situ: mammography and ultrasonography. J. Clin. Ultrasound 39(2), 59–63 (2010). doi:10.1002/jcu.20772

    Article  Google Scholar 

  46. Lee, C.H., Dershaw, D.D., Kopans, D., et al.: Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J. Am. Coll. Radiol. 7(1), 18–27 (2010). doi:10.1016/j.jacr.2009.09.022

    Article  Google Scholar 

  47. Kelly, K.M., Dean, J., Comulada, W.S., et al.: Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. Eur. Radiol. 20(3), 734–742 (2010). doi:10.1007/s00330-009-1588-y

    Article  Google Scholar 

  48. Kornecki, A.: Current status of breast ultrasound. Can. Assoc. Radiol. J. 62(1), 31–40 (2011). doi:10.1016/j.carj.2010.07.006

    Article  Google Scholar 

  49. Leong, L.C., Sim, L.S., Lee, Y.S., et al.: A prospective study to compare the diagnostic performance of breast elastography versus conventional breast ultrasound. Clin. Radiol. 65(11), 887–894 (2010). doi:10.1016/j.crad.2010.06.008

    Article  Google Scholar 

  50. Soo, M., EL BakerJA, Rosen: Sonographic detection and sonographically guided biopsy of breast microcalcifications. AJR Am. J. Roentgenol. 180(4), 941–948 (2003)

    Article  Google Scholar 

  51. Saslow, D., Boetes, C., Burke, W., et al.: American Cancer Society Guidelines for breast screening with MRI as an Adjunct to mammography. CA Cancer J. Clin. 57(2), 75–89 (2007)

    Article  Google Scholar 

  52. Kul, S., Cansu, A., Alhan, E., et al.: Contrast-enhanced MR angiography of the breast: evaluation of ipsilateral increased vascularity and adjacent vessel sign in the characterization of breast lesions. AJR Am. J. Roentgenol. 195(5), 1250–1254 (2010). doi:10.2214/AJR.10.4368

    Article  Google Scholar 

  53. Morrow, M., Waters, J., Morris, E.: MRI for breast cancer screening, diagnosis, and treatment. The Lancet 378(9805), 1804–1811 (2011). doi:10.1016/S0140-6736(11)61350-0

    Article  Google Scholar 

  54. Dewey, M., Schink, T., Dewey, C.F.: Claustrophobia during magnetic resonance imaging: cohort study in over 55,000 patients. J. Magn. Reson. Imaging 26(5), 1322–1327 (2007)

    Article  Google Scholar 

  55. Bailey, D.L., Townsend, D.W., Valk, P.E., et al. (eds.): Positron emission tomography. Bascis Science, Springer, Berlin. ISBN 978–1-85233-798-8 (Print) 978-1-84628-007-8 (online) (2005)

    Google Scholar 

  56. Wilson, C.B., Lammertsma, A.A., McKenzie, C.G., et al.: Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method. Cancer Res. 52(6), 1592–1597 (1992)

    Google Scholar 

  57. Moses, W.W.: Fundamental limits of spatial resolution in PET. Nucl. Instrum. Methods Phys. Res. A 648(1), S236–S240 (2011)

    Article  Google Scholar 

  58. Gibson, A.P., Hebden, J.C., Arridge, S.R.: Recent advances in diffuse optical imaging. Phys. Med. Biol. 50(4), R1–R43 (2005)

    Article  Google Scholar 

  59. D’Aiuto, M., Frasci, G., Barretta, M.L., et al.: The dynamic optical breast imaging in the preoperative workflow of women with suspicious or malignant breast lesions: development of a new comprehensive score. ISRN Oncol. 2012: Article ID 631917, 9 pages (2012). doi:10.5402/2012/631917

  60. Fournier, L.S., Vanel, D., Athanasiou, A., et al.: Dynamic optical breast imaging: a novel technique to detect and characterize tumor vessels. Eur. J. Radiol. 69(1), 43–49 (2009). doi:10.1016/j.ejrad.2008.07.038

    Article  Google Scholar 

  61. Tromberg, B.J., Pogue, B.W., Paulsen, K.D., et al.: Assessing the future of diffuse optical imaging technologies for breast cancer management. Med. Phys. 35(6), 24432451 (2008)

    Article  Google Scholar 

  62. Feig, S.A., Shaber, G.S., Schwartz, G.F., et al.: Thermography, mammography, and clinical examination in breast cancer screening. Review of 16,000 studies. Radiology 122(1), 123–127 (1977)

    Article  Google Scholar 

  63. Keyserlingk, J.R., Ahlgren, P.D., Yu, E., et al.: Functional infrared imaging of the breast. IEEE Eng. Med. Biol. 19(3), 30–41 (2000). doi:10.1109/51.844378

    Article  Google Scholar 

  64. Lahiri, B.B., Bagavathiappan, S., Jayakumar, T., et al.: Medical applications of infrared thermography: a review. Infrared Phys. Technol. 55(4), 221–235 (2012). doi:10.1016/j.infrared.2012.03.007

    Article  Google Scholar 

  65. Fentiman, I.S., Fourquet, A., Hortobagyi, G.N.: Male breast cancer. The Lancet 367(9510), 595–604 (2006)

    Article  Google Scholar 

  66. Ruddy, K.J., Winer, E.P.: Male breast cancer: risk factors, biology, diagnosis, treatment, and survivorship. Ann. Oncol. 24(6), 14341443 (2013)

    Article  Google Scholar 

  67. Brancaccio, R., Bettuzzi, M., Morigi, M.P., et al.: Preliminary results of a new approach for three-dimensional reconstruction of Dynamic AngioThermography (DATG) images based of the inversion of heat equation. Phys. Med. 32(9), 1052–1064 (2016). doi:10.1016/j.ejmp.2016.07.637

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Silvio Marino (working at the ANT foundation, Italian National Foundation for Cancer Research and Patient Care) for the information concerning DOBI results and the in vivo dynamic formation of the images by DATG, and Dr. Stefan Boeriu of the University of Santa Barbara (USA) for having kindly revised the English version of the paper. A great thank you to BreastLife, which supported our studies, providing us with the AURA equipment for DATG acquisition .

Lastly, we fondly remember Dr. Daniele Montruccoli, who died prematurely during the course of our research; he was the greatest world expert in DATG and introduced this technique even to the poorest countries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Brancaccio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Casali, F., Brancaccio, R., Draetta, F.P., Morigi, M.P., Bettuzzi, M., Baldazzi, G. (2017). Dynamic Angiothermography (DATG). In: Ng, E., Etehadtavakol, M. (eds) Application of Infrared to Biomedical Sciences. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-3147-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3147-2_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3146-5

  • Online ISBN: 978-981-10-3147-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics